Training Load

Definition of Training Load

Sports scientists have defined training load from different perspectives based on their fields of expertise. Some of these definitions include:

- Hara: Training load is the **physical and neurological stress** imposed on an individual's various systems (nervous, muscular, endocrine, and cardiovascular) due to **physical activity**.
- Ania Svesky: Training load is the impact of various physical exercises and their execution systems on an athlete's biological state.
- Hara: Training load consists of regulated motor stimuli that contribute to the development and maintenance of sports performance.
- Farkhushansky: From a physiological perspective, training load refers to the amount of stress applied to the body's organs and systems due to a specific physical effort, resulting in functional responses. Repeated exposure to these responses leads to gradual physiological adaptation (Hasnawi, Ahmed Youssef, 2014, p. 24).

Understanding Training Load

Based on these definitions, training load can be summarized as:

- 1. The use of **specific, organized exercises**.
- 2. Exercises performed to induce fatigue.
- 3. Fatigue leading to **recovery processes** that eliminate exhaustion.
- 4. **Supercompensation**, where the body improves **beyond its original state**, leading to performance enhancement.

Key Aspects of Training Load

• All physical activities performed by an athlete during training and competition.

• The impact of these activities on the athlete's body.

Types of Training Load

Training load is classified based on different criteria:

1. Based on Goal

- Training load: Applied during regular training sessions.
- Competition load: Occurs during actual sporting events.

2. Based on Specialization

- General load: Includes general fitness training.
- **Specific load**: Focuses on sport-specific training.

3. Based on Volume

- Low volume
- Medium volume
- High volume

4. Based on Direction

- Load directed towards improving a **single physical attribute** (e.g., speed, strength, endurance, flexibility).
- Load targeting **multiple physical attributes** simultaneously (e.g., anaerobic and phosphagen system development).

5. Based on Duration

- Load within a single training session.
- Load within a **microcycle** (weekly training program).
- Load within a **mesocycle** (monthly training phase).
- Load within a **macrocycle** (annual training plan).

6. Based on Effect

- External load: The amount of work performed during training.
- Internal load: The physiological impact on the athlete's body.
- **Competition load**: The stress and adaptation that occur during actual competitive events.

Forms of Training Load

1. External Load

Refers to the **amount of work** performed in a training session, including the **intensity and duration of exercises**.

Factors Determining External Load

- Intensity (Stimulus Strength)
 - Measured by **speed of execution** (e.g., sprint time).
 - **Repetitions and sets** in resistance training.
 - Weight lifted in strength training.
 - **Distance covered** in endurance activities.

Training Duration

- The total **time spent on exercises**.
- Distance covered within a specific time.

2. Internal Load

Represents the body's response to training, including heart rate, oxygen consumption, and muscle fatigue.

3. Psychological Load

The mental and emotional stress associated with training and competition, influenced by:

- Competition pressure
- Fear of failure
- Performance expectations

Determining Training Load

Measuring Intensity

- Karvonen Method: Uses heart rate reserve (HRR) to determine training intensity.
- Maximum Heart Rate Method: Calculates training intensity as a percentage of the athlete's maximum heart rate.

Example:

- 1. Maximum heart rate = **190 bpm**
- 2. Resting heart rate = **60 bpm**
- 3. Heart rate reserve = 190 60 = 130 bpm
- 4. Target heart rate at **75% intensity** = $60 + (130 \times 0.75) = 157$ bpm

Measuring Volume

- Total repetitions performed in a training session.
- Total training duration.
- Total distance covered in endurance training.
- Total weight lifted in strength training.

Principles of Increasing Training Load

1. Gradual Increase

- Training volume should increase year by year.
- Matveev suggests an annual increase of 10-20% in training volume.

2. Optimal Load for Age and Ability

- Training load should match the **athlete's age and physical capacity**.
- Overloading beyond capacity leads to fatigue, injury, and decreased performance.

Signs of Overtraining

- Decreased performance in training
- Longer recovery time
- Increased risk of injury
- Reduced motivation and mental focus

Training Load Density (Training Density)

Training density refers to **the ratio of work-to-rest periods within a training session**. It determines:

- How frequently exercises are performed.
- How quickly the athlete recovers between exercises.

Types of Rest Periods

- 1. **Full Recovery Rest**: Ensures complete recovery before repeating the exercise.
- 2. Partial Recovery Rest: Shortens rest periods to maintain training intensity.
- 3. **Minimal Rest**: Used to develop endurance and simulate competition fatigue.

Training Load Levels

Training load is divided into five levels:

- 1. Maximum Load
 - The highest intensity an athlete can endure.
 - Used for elite-level performance improvements.
 - Requires **long recovery periods** (12-18 minutes).

2. Sub-Maximal Load

- Slightly lower than maximum load.
- Improves endurance and performance stability.
- Requires moderate recovery periods (8-12 minutes).

3. Moderate Load

- Used for **maintaining fitness**.
- Ideal for **technical and tactical training**.

- Requires **short recovery periods** (6-10 minutes).
- 4. Light Load
 - Used for warm-ups, cooldowns, and recovery training.
 - Helps reduce muscle tension and mental stress.
 - Requires **minimal recovery periods** (2-5 minutes).
- 5. Active Recovery Load
 - Includes low-intensity activities like jogging or relaxation exercises.
 - Helps **speed up recovery** and prevent overtraining.

Factors Influencing Training Load

- 1. Neuromuscular Coordination
 - Complex skills (e.g., gymnastics) require greater effort and precision.
- 2. Psychological Stress
 - Sports like boxing, gymnastics, and diving involve high psychological pressure.
- 3. Training Adjustments
 - Coaches modify training intensity, volume, and rest periods based on performance and recovery.

Methods for Controlling Training Load

- 1. Adjusting Intensity
 - Increasing **speed**, **resistance**, **or complexity** of exercises.
- 2. Modifying Volume
 - Changing exercise duration or repetitions.
- 3. Regulating Rest Periods
 - Adjusting work-to-rest ratios for optimal recovery.

By balancing **intensity**, **volume**, **and recovery**, athletes can achieve **maximum performance improvements while minimizing injury risks**.