

•

.(

·

1

PROBABILITIES

•

. " (Event)

/ ()

/ " "

. / = /

(FERMAT) (PASCAL)

3

:	
	:
-	
•	
(Experiment)	
(Event)	
mple Space)	
_	
	•

(Possible Cases)

(BERNOULLI)

(Favorable Cases)

(Equally Likely Cases) -

(Mutually Exclusive Events) -

B A

(Independent Events) -

B A

(Exhaustive Events) -

... C B A

(Theoretical Approach)

.

:_____

()

(D C B A)

:

Α .

D A .

D A .

Α .

S :____

 $S = \{AB, AC, AD, BC, BD, CD\}$

A -

-----= =

 $P(A) = \frac{3}{6} = \frac{1}{2}$

D A

 $P(A \text{ or } D) = P(AUD) = \frac{5}{6}$

D, A - P(A, D) = P(A \cap D) = $\frac{1}{6}$

A -

$$\therefore P(\overline{A}) = \frac{3}{6} = \frac{1}{2}$$

A $P()\overline{A}$

SP

-

()

.

/

.

·

(Empirical Approach)

N

 n_1 n_2

 n_3

N

$$\frac{n_2}{N} = \frac{n_3}{N} = \frac{1}{3}$$

$$\frac{1}{3}$$

$$N$$

$$% \% \%$$

$$\lim \frac{n_1}{N} = 0.70$$

$$N \to \infty$$

$$\lim \frac{n_2}{N} = 0.20$$

$$N \to \infty$$

$$\lim \frac{n_3}{N} = 0.10$$

$$N \to \infty$$

$$\lim \frac{n_3}{N} = 0.10$$

$$\ln \frac{n_3}{N} = 0.10$$

 $N \rightarrow \infty$

: $\begin{matrix} \mathbf{N} \\ \mathbf{r} \end{matrix}$ $\begin{matrix} \mathbf{Lim} \ \frac{\mathbf{r}}{\mathbf{n}} \\ \mathbf{N} \rightarrow \end{matrix}$

 $\dots A_3, A_2, A_1$

() ()

В

A B P (A B) = P(A) + P(B)

P(AUB) = P(A) + P(B)

:____

:_____

P (1 3 5) = P (1) + P (3) + P (5)
=
$$\frac{1}{6} + \frac{1}{6} + \frac{1}{6}$$

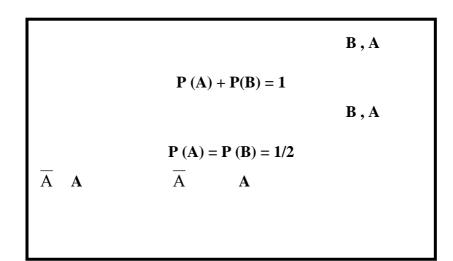
= $\frac{1}{2}$

·____

() ()
$$\frac{1}{36}$$
 () ... ()
$$() = P () + P () + ... + P ()$$

$$= \frac{1}{36} + \frac{1}{36} + ... + \frac{1}{36}$$

$$= \frac{6}{36}$$



A) A В В A В **(**B () () S A and B - **B** A P(A) + P(B)В В A

$$P (A B)$$
 $P (A B)$
 $P (A B)$
 $P (A B)$
 $P (A B) = P (A) + P (B) - P (A B)$
 $P (AUB) = P (A) + P (B) - P (A B)$

<u>:</u>

$$S = \{AB, AC, AD, BC, BD, CD\}$$

•

P (AUD) = P (A D) = P (A) + P (D) – P (A \cap D) =
$$\frac{3}{6} + \frac{3}{6} - \frac{1}{6}$$

:_____

.

B A

$$P(A) = \frac{40}{52}$$

$$P(B) = \frac{13}{52}$$

$$P(A \cap B) = \frac{10}{52}$$

$$P (AUB) = P (A) + P (B) - P (A \cap B)$$
$$= \frac{40}{52} + \frac{13}{52} - \frac{10}{52}$$
$$= \frac{43}{52}$$

B A

$$P(A \cap B) = P(A) P(B)$$

: _____

()

<u>:</u>____

$$\frac{1}{6}$$

$$\frac{1}{6}$$

$$P(A \cap B) = P(A) P(B) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$$

Conditional Probability

B A

(A) .(B)

B A
A P (A/B)
.B

В		A	
	•		

AA

AB

BA

BB

P(A/A) = 6/9P(A) = 7/10P(B/A) = 3/9P(A/B) = 7/9P(B) = 3/10B P(B/B) = 2/917

$$P(A \cap A) = P(A, A) = P(A) P(A/A)$$

$$= \frac{7}{10} \times \frac{6}{9} = \frac{42}{90}$$

$$P(A \cap B) = P(A) P(B/A) = \frac{7}{10} \cdot \frac{3}{9} = \frac{21}{90}$$

$$P(B \cap A) = P(B) P(A/B) = \frac{3}{10} \cdot \frac{7}{9} = \frac{21}{90}$$

$$P(B \cap B) = P(B) P(B/B) = \frac{3}{10} \cdot \frac{2}{9} = \frac{6}{90}$$

$$P(B)$$
 B, A

В \mathbf{A}

$$(A \cap B)$$

 $\mathbf{P}(\mathbf{A}/\mathbf{B}) = \mathbf{P} \frac{(\mathbf{A} \cap \mathbf{B})}{\mathbf{P}(\mathbf{B})}$

В A

B B, A

$$P(A \cap B) = P(A) P(B/A)$$
$$= P(B) P(A/B)$$

$$P(A \cap B \cap C) = P(A) P(B/A) P(C/AB)$$

:____

:____

A1

A2

A3

$$P(A_{1} \cap A_{2} \cap A_{3}) = P(A_{1}) P(A_{2}/A_{1}) P(A_{3}/A_{1}A_{2})$$

$$= \left(\frac{7}{10}\right) \left(\frac{6}{9}\right) \left(\frac{5}{8}\right)$$

$$= \frac{210}{720}$$

:_____

<u>:</u>

A

В

$$P (AB) = P (A) P(B/A)$$

= $\frac{4}{52} \cdot \frac{3}{51}$

:

:

: _____

. I

. II

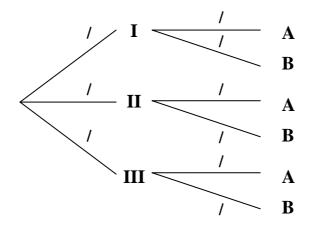
. III

. (P) .

<u>:____</u>

. (i)

:



II .

$$\cdot \left(\frac{1}{3}\right)\!\!\left(\frac{3}{8}\right)$$

)

:(

$$P = \frac{1}{3} \cdot \frac{4}{6} + \frac{1}{3} \cdot \frac{5}{8} + \frac{1}{3} \cdot \frac{3}{4}$$
$$= \frac{1}{3} \left(\frac{4}{6} + \frac{5}{8} + \frac{3}{4} \right)$$
$$= \frac{1}{3} \left(\frac{49}{24} \right) = \frac{49}{72}$$

(Bayes' Theorem)

Prior

Probability

. Posterior Probability

:

.

.

S
$$P(D) O \neq D$$

$$P(A/D) = \frac{P(A D)}{P(A D) + P(B D)}$$

$$P(B/D) = \frac{P(B D)}{P(A D) + P(B D)}$$

$$B$$

$$A$$

: _____

A .

A

•

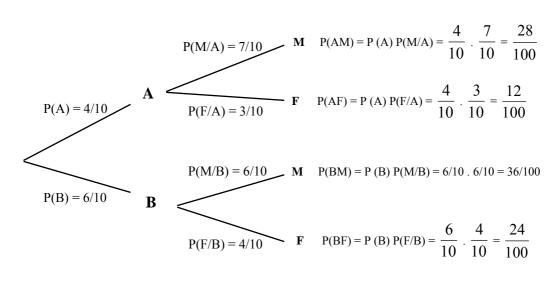
A
$$P(M/A)$$

B
$$P(M/B)$$

$$P(F/A)$$

$$B$$
 $P(F/B)$

:



$$P(A/F) = \frac{P(AF)}{P(AF) + P(BF)} = \frac{12/100}{12/100 + 24/100}$$
$$= \frac{12}{36} = \frac{1}{3}$$

:

$ \begin{array}{r} \frac{12}{36} \\ \frac{24}{36} \end{array} $	$ \begin{array}{r} $	$\frac{3}{10}$ $\frac{4}{10}$	$\frac{4}{10}$ $\frac{6}{10}$	A B
1.0	$\frac{36}{100}$		1.0	

Repeated Trials

_

•

:

N

. N+

:

·

Binomil Probabilit Law

1/2 =

 $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = (\frac{1}{2})^3$

 $(\frac{1}{2})^2 =$

 $(\frac{1}{2})^3 (\frac{1}{2})^2$

26

.

$$\subset_3^5$$

(1-P) (P) (n) (n)
$$= (n > r >)$$

$$\subset_{r}^{n} p^{r} (1-p)^{n-r}$$

<u>:()</u>

:

$$C_5^5 \left(\frac{1}{2}\right)^5 \left(\frac{1}{2}\right)^0 = \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

=

$$C_4^5 \left(\frac{1}{2}\right)^4 \left(\frac{1}{2}\right)^1 = 5 \left(\frac{1}{2}\right)^5 = \frac{5}{32}$$

=

$$C_3^5 \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^2 = 10 \left(\frac{1}{2}\right)^5 = \frac{10}{32}$$

=

$$C_2^5 \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^3 = 10 \left(\frac{1}{2}\right)^5 = \frac{10}{32}$$

_

$$C_1^5 \left(\frac{1}{2}\right)^1 \left(\frac{1}{2}\right)^4 = 5 \left(\frac{1}{2}\right)^5 = \frac{5}{32}$$

_

$$C_0^5 \left(\frac{1}{2}\right)^0 \left(\frac{1}{2}\right)^5 = 1 \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$(\frac{1}{2} + \frac{1}{2})^5$$

n

n ...

$$P(O) + P(1) + P(2) + ... + P(n) = 1$$

.

. ____

_

-

_

=

$$=$$
 $\frac{3}{2} \left(\frac{1}{6} \right)^2 \left(\frac{5}{6} \right)^1 = \frac{15}{216}$

$$\left(\frac{1}{6} + \frac{5}{6}\right)^3$$

Hypregeometric Low

N

R n_3 n_2 n_1 . r_3 r_2 r_1

•

 \subset_R^N R

 n_1 r_1

 r_2 r_2 r_1 r_3 r_4 r_5 r_6 r_7 r_8

 $\binom{n_1}{n_2}\binom{n_2}{n_3}$

_____ =

 $\frac{ \overset{n_1}{\underset{r_1}{\subset}} \overset{n_2}{\underset{r_2}{\subset}} \overset{n_3}{\underset{r_3}{\subset}} }{\overset{n_3}{\underset{R}{\subset}} }$

 $R = r_1 + r_2 + r_3$

 $= n_1 + n_2 + n_3$

:

 n_1 N

 $\begin{matrix} r_1 \\ \vdots & z & r_z & \dots & r_2 \\ \\ & & \frac{ \overset{n_1}{\subset} \overset{n_2}{r_1} \cdots \overset{n_z}{\subset} \overset{n_z}{r_z} }{\overset{N}{\subset} \overset{N}{R}} \end{matrix}$

:_____

.

%

. (i

. (ii

= (i

(ii

$$\frac{\overset{5}{\subset_{1}^{5}}\overset{10}{\subset_{2}^{1}}+\overset{5}{\subset_{2}^{5}}\overset{10}{\subset_{1}^{15}}+\overset{5}{\subset_{3}^{5}}\overset{10}{\subset_{0}^{15}}=\frac{335}{455}$$

Expectation

P

X P.X

× = :.

E

E = P.X

P.X $(1+i)^{-n} = \frac{P \cdot X}{(1+i)^n}$

:_____

()

1/4 = " =

E = P.X.= $\frac{1}{4}(5) = 1.25$

()

$$E = P.X. = \frac{40}{100} \times 100 = 40 =$$
 :_____

<u>:</u>____

= % .

$$E = \frac{P.X}{(1+i)^n}$$

$$= \frac{40}{(1.035)^5}$$

$$= \frac{40}{1.1876862}$$

$$= 33.6789 = 33.7$$

) (% .

.

() ()

.

% .

:_____

п

·

 $P = \frac{l_{X} + n}{l_{X}}$

 \mathbf{x} $\mathbf{1}_{\mathbf{x}}$

x + n $1_x + n$

 $P = \frac{l_{40}}{l_{20}} = \frac{78106}{92637} = 0.84314$

$$\frac{P.X}{(1+i)^n}$$

$$= \frac{0.84314 \times 2000}{(1.035)^{20}} = \frac{1686.28}{1.9897877} = 847.467$$

% .

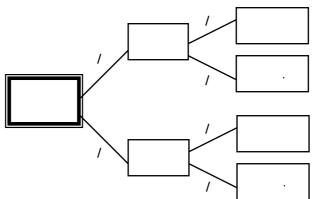
1/2

1/2)

 $\frac{2}{5}$

%





.

1.
$$0 - 1000$$
 = - 1000

$$2. \quad \frac{1102.5}{(1.05)^2} - 1000 \qquad = \quad 0$$

$$3. \quad \frac{1050}{1.05} - 1000 \qquad \qquad = \quad 0$$

4.
$$\frac{1102.5}{(1.05)^2} + \frac{1050}{1.05} - 1000 = 1000$$

:

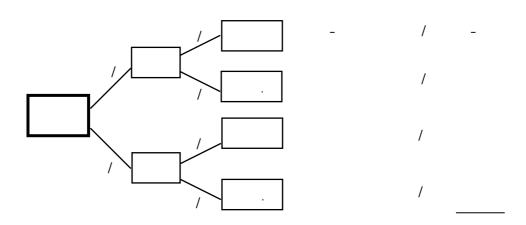
$$= \frac{1}{2} \cdot \frac{2}{5} = \frac{2}{10}$$

$$= \frac{1}{2} \cdot \frac{3}{5} = \frac{3}{10}$$

$$= \frac{1}{2} \cdot \frac{2}{5} = \frac{2}{10}$$

$$= \frac{1}{2} \cdot \frac{5}{3} = \frac{3}{10}$$

:



)

)

 $\left(\frac{1}{4}\right)$ $\left(\frac{3}{8}\right)$

 $\left(\frac{1}{8}\right)$

.

n .

 $\left(\frac{1}{6}\right)$

.

. (/)

.

(/)

.

· (/)

(/)

(/)

(/)

(/)

40

(.)

()

(/)

(/) (/)

. (/)

(/)

(/)

41

 $\frac{2}{3}$ / (/) (.) (/) (/) (/) B , A A В

42

A

(.)

В

S B, A. $P(AB) = \frac{1}{5} \qquad P(B/A) = \frac{1}{2} \qquad P(A/B) = \frac{1}{3}$ $\left(\frac{3}{5}, \frac{2}{5}\right) \qquad P(B), P(A)$

.

 M_1 . (/ / /) M_3 M_2

() .

.(/)

% .

(/)

i)
$$\frac{26}{52} \cdot \frac{26}{52} = \frac{1}{4}$$

ii)
$$\frac{13}{52} \cdot \frac{13}{52} = \frac{1}{16}$$

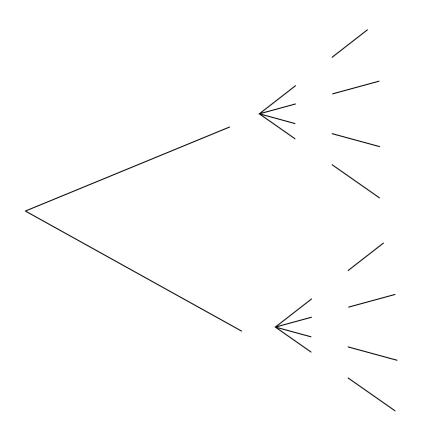
ii)
$$\left(\frac{13}{52} \cdot \frac{13}{52}\right) + \left(\frac{13}{52} \cdot \frac{13}{52}\right) + \left(\frac{13}{52} \cdot \frac{13}{52}\right) + \left(\frac{13}{52} \cdot \frac{13}{52}\right) = \frac{1}{4}$$

(i

.

$$\frac{1}{8} + \frac{1}{8} = \frac{1}{4}$$

$$(1/2.1/2.1/2.1/2) + (1/2.1/2.1/2) = \frac{1}{4}$$



(ii

$$\frac{3}{8} = \frac{}{}$$

$$\frac{C_2^3}{8} = \frac{3}{8} =$$

.

=

$$C_5^5 \div 32 = 1/32$$

 $C_4^5 \div 32 = 5/32$

$$C_3^5 \div 32 = 10/32$$

$$C_2^5 \div 32 = 10/32$$

$$C_1^5 \div 32 = 5/32$$

 $C_0^5 \div 32 = 1/32$

.

$$p($$
) = $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot = \frac{1}{8}$

$$3n =$$
 .

$$\frac{n}{2}$$

= ∴

$$\frac{n}{2} \times 1 = \frac{n}{2}$$

=

$$\frac{n}{2} \times 3 + \frac{n}{2} \times 2 = \frac{5n}{2}$$

$$= \frac{n}{2} \div 3n$$

$$= \frac{n}{2} \times \frac{1}{3n} = \frac{1}{6}$$

: .

=

$$1 - \left(\frac{3}{5} \cdot \frac{3}{7}\right) = 1 - \frac{9}{35} = \frac{26}{35}$$

=

$$= \left(\frac{2}{5} \cdot \frac{3}{7}\right) + \left(\frac{3}{5} \cdot \frac{4}{7}\right) + \left(\frac{2}{5} \cdot \frac{4}{7}\right)$$
$$= \frac{26}{35}$$

= .

$$P = \left(\frac{3}{12} \cdot \frac{2}{11} \cdot \frac{1}{10}\right) + \left(\frac{6}{12} \cdot \frac{5}{11} \cdot \frac{4}{10}\right) + \left(\frac{3}{12} \cdot \frac{2}{11} \cdot \frac{1}{10}\right) = \frac{1}{10}$$

$$= \frac{C_3^3 + C_3^6 + C_3^3}{C_3^{12}} = \frac{1}{10}$$

.

i)
$$C_3^{12} = 220$$

$$) = \frac{C_3^9 C_0^3}{C_3^{12}}$$

$$= \frac{84}{220} = \frac{21}{55}$$

ii) P ()
$$= \frac{C_1^3 C_2^9}{C_3^{12}}$$

$$= \frac{27}{55}$$

iii) P (
$$= \frac{C_1^3 C_2^9}{C_3^{12}} + \frac{C_2^3 C_1^9}{C_3^{12}} + \frac{C_3^3 C_0^9}{C_3^{12}}$$
$$= \frac{34}{55}$$

$$= 1-P ()$$

$$= 1 - \frac{21}{55}$$

$$= \frac{34}{55}$$

iv) P () =
$$\frac{C_3^5 + C_3^4 + C_3^3}{C_3^{12}}$$
 = $\frac{3}{44}$

v) P () =
$$\frac{C_1^5 \cdot C_1^4 \cdot C_1^3}{C_3^{12}} = \frac{3}{11}$$

.

$$P = \frac{45}{100} \cdot \frac{25}{100} \cdot \frac{30}{100}$$
$$= 0.03375$$

$$\frac{1}{52} =$$
 (ii

$$= \left(\frac{4}{52} \cdot \frac{4}{52}\right) + \left(\frac{4}{52} \cdot \frac{4}{52}\right) + \dots$$

$$= 10 \left(\frac{4}{52} \cdot \frac{4}{52}\right)$$

$$= \frac{10}{13^3}$$

$$= \frac{10}{169}$$

$$= 13 \left(\frac{4}{52} \cdot \frac{4}{52} \right) = \frac{1}{13}$$
 (iii

$$\mathbf{S} = \left\{ \begin{array}{c} .i \ . \end{array} \right.$$

$$\frac{5}{8}$$
 = \therefore

$$P = \frac{2}{8} \qquad .ii$$
$$= \frac{1}{4}$$

P ()
$$= \left(\frac{1}{3}\right)\left(\frac{2}{3}\right) + \left(\frac{1}{3}\right)\left(\frac{1}{4}\right) + \left(\frac{1}{3}\right)\left(\frac{1}{6}\right)$$
$$= \left(\frac{13}{36}\right)$$

$$\frac{1}{2} \times \frac{5}{13} = \frac{1}{2} \times \frac{6}{17} = \frac{1}{2} \times \frac{6}{13} + \frac{1}{2} \times \frac{6}{17} = 0.36878$$

$$S = 2^4 = 16$$
.

i) P() =
$$\frac{C_1^4}{16}$$

ii) P() =
$$\frac{C_3^4 + C_4^4}{16}$$

iii) P ()=
$$1-\frac{C_4^4}{16}$$

= $\frac{15}{16}$
= $\frac{C_0^4 + C_1^4 + C_2^4 + C_3^4}{16}$

$$P (A B) = P(A) + P(B) - P(AB)$$

= 0.6 + 0.3 - 0.1
= 0.8

P(AB) = P(A) P(B/A)
= P(B) P(A/B)
P(A) =
$$\frac{P(AB)}{P(B/A)} = \frac{1/5}{1/2} = \frac{2}{5}$$

P(B) = $\frac{P(AB)}{P(A/B)} = \frac{1/5}{1/3} = \frac{3}{5}$

:.

$$= P(D)$$

$$M_1 = P(M_1)$$

$$M_2 = P(M_2)$$

$$M_3 = P(M_3)$$

$$P(M_1) = 0.3$$
 $P(D/M_1) = 0.01$
 $P(M_2) = 0.3$ $P(D/M_2) = 0.03$
 $P(M_3) = 0.4$ $P(D/M_3) = 0.02$

$$P(M_1D) = P(M_1) P(D/M_1) = (0.3) (0.01) = 0.003$$

 $P(M_2D) = P(M_2) P(D/M_2) = (0.3) (0.03) = 0.009$
 $P(M_3D) = P(M_3) P(D/M_3) = (0.4) (0.02) = 0.008$

.

$$P(M_1/D) = \frac{P(M_1D)}{P(M_1D) + P(M_2D) + P(M_3D)}$$
$$= \frac{0.003}{0.003 + 0.009 + 0.008} = \frac{3}{20}$$

$$P(M_2/D) = \frac{P(N_2D)}{P(M_1D) + P(M_2D) + P(M_3D)}$$
$$= \frac{0.009}{0.020} = \frac{9}{20}$$
$$P(M_3/D) = \frac{0.008}{0.020} = \frac{8}{20}$$

3/20	0.003	0.01	0.30	M_1
9/20	0.009	0.03	0.30	M_2
8/20	0.008	0.02	0.40	M_3
1.00	0.020		1.00	

P () = $\frac{c_1^4 c_4^{4^{48}}}{c_5^{52}}$ = $\frac{3243}{10829}$

=

$$\frac{4}{52} \times \frac{48}{51} \times \frac{47}{50} \times \frac{46}{49} \times \frac{45}{48} = \frac{4243}{54145}$$

$$5 \times \frac{3243}{54145} =$$
$$= \frac{3243}{10829}$$

$$P(D/M_1)=0.05 \quad \mathbf{D} \qquad P(M_1D)=P(M_1) P(D/M_1) \\ = 0.60\times 0.05 = 0.03$$

$$\mathbf{N} \qquad \mathbf{N}$$

$$P(M_2)=0.4 \qquad M_2 \qquad P(D/M_2)=0.02 \quad \mathbf{D} \qquad P(M_2D)=P(M_2) P(D/M_2) \\ = 0.40\times 0.02 = 0.008$$

$$P(M_1/D) = \frac{P(M_1D)}{P(M_1D) + P(M_2D)_2}$$
$$= \frac{0.03}{0.03 + 0.008}$$
$$= \frac{0.03}{0.038} = \frac{30}{38}$$
$$= 0.7895$$

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

		- -
	DISCRETE	
		CONTINOUNS
		:
		: -
		-
•••		-

•

.

. -

. ...

Discrete

Probability Distributions

/ / / / / 1/6

 :

.

Probabily Density Function

(**P.D.F.**)

$$x_n \, ... \, x_3 \, , \, \, x_2 \, , \, \, x_1 \, , \qquad \qquad X$$

$$i \, = \, 1, \, \, 2 \, \, ... n \qquad \quad P(X \! = \! x_i)$$

$$. \, \, f(x_i)$$

 $\mathbf{f}(\mathbf{x}) \qquad \qquad \mathbf{F}(\mathbf{X} = \mathbf{x}\mathbf{i})$ \vdots $i) \ f(\mathbf{x}) \ge 0$ $ii) \sum_{i=1}^{n} \ f(\mathbf{x}_i) = 1$

 f(x) = P(X=x) $f(x_1)$ $f(x_2)$ $f(x_n)$

:____

X

:

{

X

$$f(x) = P(X = x)$$

$$f(0) = P(X = 0) = 1/4$$

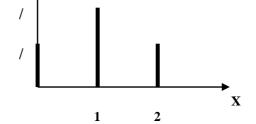
$$f(1) = P(X=1) = 1/2$$

$$f(2) = P(X=2) = 1/4$$

: X

X = x			
$\mathbf{f}(\mathbf{x}) = \mathbf{P}(\mathbf{X} = \mathbf{x})$	/	/	/

:



Probability Distribution

-

 \mathbf{X}

. X

 \mathbf{X}

 $\mathbf{F}(\mathbf{x}) \qquad \qquad \mathbf{P}(\mathbf{X} \leq \mathbf{x}) \qquad \mathbf{x}$

 $F(x) = P(X \le x) = \sum_{xi \le x} f(xi)$

Continuous Probability

. .

Distributions

:

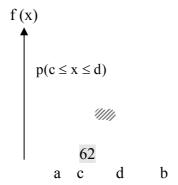
X	()	f(x)
0.90	1	0.01
0.95	7	0.07
0.99	25	0.25
1.00	32	0.32
1.01	30	0.30
1.05	5	0.05
	100	1.00

. .

X

.

$$a \le x \le b$$
 (a.b)





 $P(c \le X \le d)$

$$f(x) = P(c \le x \le d)$$

x = d , x = c

 $: \qquad \qquad \mathsf{f}(\mathsf{x})$

i)
$$f(x) \ge 0$$
 $f(x)$

ii)
$$\int_{R} f(x) dx = 1 \qquad 1 = b$$

 $\int_{a}^{b} f(x) dx = 1$

$$(a \le \times \le b)$$

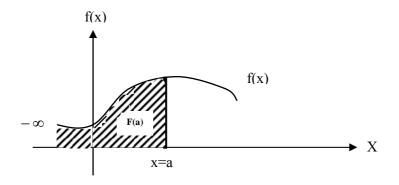
$$\int_{-\infty}^{\infty} f(x) dx = 1 \ (-\infty \le x \le \infty)$$

 $P(x \le a)$ a X

F(x)

$$F(x) = P(x \le a) = \int_{-\infty}^{a} f(x) dx$$

:



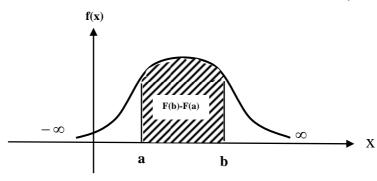
•_____

$$P(a \le x \le b) = \int_{a}^{b} f(x)dx$$

$$= \int_{-\infty}^{b} f(x)dx - \int_{-\infty}^{a} f(x)dx$$

$$= f(b) - f(a)$$

:



x c -

$$f(x) = c\binom{5}{x}$$

$$x = 0, 1, ..., 5$$

c

X

X

X = x		1	2	3	4	5
$\mathbf{f}(\mathbf{x}) = \mathbf{P}(\mathbf{X} = \mathbf{x})$	C	2C	3C	4C	1.5C	0.5C

C :

: :

C

- i) P(x < 3)
- ii) $P(0 < x \le 4)$
- iii) P(0 < x < 2)

X :

-

. X .

() -X

. X

 $f(x) = \frac{1}{2}$

 $0 \le x \le 2$

:

- i) P(0.5 < x < 1.5)
- ii) P(x > 0.25)
- iii) P(x < 0.75)
- iv) P(x > 3)

_

$$f(x) = \frac{2-x}{2}$$
$$0 < x < 2$$

:

- i) P(0.5 < x < 1)
- ii) P(x > 1.5)
- iii) P(x < 0.3)
- iv) P(0 < x < 2)

• •

. X

. X

-

. X

. X

 $\frac{1}{4}$

. **x** .

. X

$$\sum_{a \mid 1 \mid x} f(x) = 1$$

$$\therefore \sum_{a \mid 1 \mid x} C\binom{5}{x} = 1$$

$$C\sum_{a \mid 1 \mid x} C\binom{5}{x} = 1$$

$$C(1+5+10+10+5+1) = 1$$

$$C = 1/32$$

: -

$$\sum_{a \mid 1x} f(x) = 1$$

$$\therefore$$
 C + 2C +3C + 4C + 1.5C + 0.5C = 1

$$\therefore C = 1/12$$

:

i)
$$P(x<3) = P(x=0) + P(x=1) + P(x=2)$$
$$= C + 2C + 3C$$
$$= 6C$$
$$= 6(1/12)$$
$$= 1/2$$

ii)
$$P(0 < X \le 4) = P(X=1) + P(X=2) + P(X=3) + P(X=4)$$

= 2C + 3C +4C + 1.5C

$$= 10.5. C$$

$$= 10.5 (1/12)$$

$$= 10.5/12$$

$$= 1 - [(P (X=0) + P(X=5)]]$$

$$= 1 - (C + 0.5 C)$$

$$= 10.5 C$$

$$= 10.5$$

$$= 12$$

iii)
$$P(0 < X < 2) = P(X = 1)$$
$$= 2 C$$
$$= 2/12 = 1/6$$

 \mathbf{x} :

$$F(x) = P(X \le x)$$

$$F(0) = P(X \le 0) = 1/12$$

$$F(1) = P(X \le 1) = 3/12$$

$$F(2) = P(X \le 2) = 6/12$$

$$F(3) = P(X \le 3) = 10/12$$

$$F(4) = P(X \le 4) = 23/24$$

$$F(5) = P(X \le 5) = 1$$

$$f(x) = (1/2)^{x}$$

 $x=1, 2, ...$

 $\mathbf{X} = \mathbf{x}$ 1 2 310 $\mathbf{f}(\mathbf{x}) = \mathbf{P}(\mathbf{X} = \mathbf{x})$ 1/10 1/10 1/101/10

$$f(x) = 1/10$$
 $x = 1, 2, ..., 10$

i) $P(0.5 < x < 1.5) = \int_{0.5}^{1.5.} 1/2 dx$

$$= \left| \frac{\mathbf{x}}{2} \right|_{0.5}^{1.5}$$
$$= \frac{1}{2}$$

ii)
$$P(x > 0.25) = \int_{0.25}^{2} 1/2 dx$$

$$= 7/8$$

iii)
$$P(x < 0.75) = \int_{0.5}^{0.75} 1/2 dx$$
$$= 3/8$$

iv)
$$P(x > 3) = \int_{3}^{\infty} 1/2 dx$$
$$= 0$$
$$0 \le x \le 2$$

i) P (05 < x < 1) = $\int_{0.5}^{1} \frac{2-x}{2} dx$ = $\int_{0.5}^{1} 1 - \frac{x}{2} dx$ = $\int_{0.5}^{1} x^{0} dx - \int_{0.5}^{1} \frac{x}{2} dx$ = $\left| x \right|_{0.5}^{1} - \left| \frac{x^{2}}{4} \right|_{0.5}^{1}$ = $1/2 - \frac{3}{16} = \frac{5}{16}$

ii)
$$P(x > 1.5)$$
 = $\int_{1.5}^{2} \frac{2-x}{2} dx$ = $\frac{1}{16}$

iii) P (x < 0.3) =
$$\int_{0}^{0.3} \frac{2-x}{2} dx$$
$$= 0.2775$$

iv)
$$P(0 < x < 2) = \int_{0}^{2} \frac{2-x}{2} dx$$

4 5 0 2 1 3 $(0.6)^5$ $(0.6)^{1}$ $(0.6)^2$ $(0.6)^3$ $(0.6)^4$ p(x) 0.4 (0.4)(0.4)(0.4)(0.4)

X	4	5	6	7	8
p(x)	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{3}{9}$	$\frac{2}{9}$	$\frac{1}{9}$

 $P(x) = C_x^n p^x q^{n-x}$ $P(0) = \frac{27}{64} , P(1) = \frac{27}{64} , P(2) = \frac{9}{64}$ $P(3) = \frac{1}{64}$

()

Expectation

f(x) X

 $\int_{-\infty}^{\infty} x f(x) dx$ (

)

f(x)

X $\sum_{\text{all } x} x P(x)$

P(x) X

Е E(X)X : x

$$E(x) = \int_{-\infty}^{\infty} x f(x) dx = \mu$$

$$= \sum_{\text{all } x} x P(x) = \mu$$

. X

E(x)

. x () μ

() $(i =) x_i P(x)$

 $\left(\phi\ (x)\right) \ x$

 $E [\varphi (x)] = \sum_{\text{all } x} \varphi(x) P(x)$ $= \int_{\varphi} \varphi(x) f(x) dx$

 $= \int_{\substack{\varphi \\ \text{Range} \\ x}} \varphi(x) f(x) dx$

. X

 $\varphi(x) = x^r$

 $E(x^r) = \sum_{all \, x} x^r P(x)$

$$= \int_{Rx} x^{r} f(x) dx$$
$$r = 1$$

$$E(X) = \sum_{\text{all } x} x P(x) = \mu$$
$$= \int_{Rx} x f(x) dx = \mu$$

:_____

. .

.

/	
/	
/	
/	
/	
/	
/	
1	

X

X :

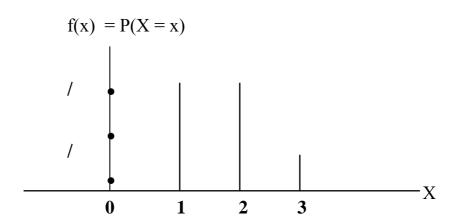
X = x	0	1	2	3
f(x) = P(X=x)	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

$$E(X) = \sum_{i=0}^{3} Xi P(xi)$$

$$= 0(\frac{1}{8}) + 1(\frac{3}{8}) + 2(\frac{3}{8}) + 3(\frac{1}{8})$$

$$= \frac{3}{2}$$

:



Properties of Expected Value

E

:

x a

$$E(ax) = aE(X)$$

:

$$E(ax) = \sum_{\text{all } x} ax P(x)$$
$$= a \sum_{\text{all } x} X P(x)$$
$$= a E(X)$$

$$E(ax) = \int_{-\infty}^{\infty} a x f(x) dx$$
$$= a \int_{-\infty}^{\infty} f(x) dx$$
$$= a E(x)$$

 $a \hspace{1cm} X$

E(a) = a

:

$$E(a) = \sum_{\text{all } x} aP(x)$$
$$= a \sum_{\text{prod}} P(x)$$
$$= a(1)$$
$$= a$$

:

$$E(ax+b) = a E(x) + b$$

:

$$E(ax+b) = E(ax) + E(b)$$
$$= a E(x) + b$$

$$E(2x + 3) = 2 E(x) + 3$$

$$E[E(x)] = E(x)$$

:

.

E(x) z

$$E(z) = z$$

$$E[E(x)] = E(x)$$

-
$$E[(X - E(x)] = 0$$

:

$$E [(x - E(x)) = E(x) - E(E(x))]$$

= $E(x) - E(x)$
= 0

 $E(X \pm Y) = E(x) \pm E(Y)$

:

$$E(X \pm Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x \pm y) f(x,y) dxdy$$

$$= \iint_{-\infty}^{\infty} x f(x,y) dxdy \pm \iint_{\infty}^{\infty} y f(x,y) dxdy$$

$$= \int_{\infty}^{\infty} \int_{-\infty}^{\infty} (x \pm y) f(x,y) dxdy \pm \int_{\infty}^{\infty} \int_{\infty}^{\infty} \int_{\infty}^{\infty} f(x,y) dxdy + \int_{\infty}^{\infty} \int_{\infty}^{\infty} \int_{\infty}^{\infty} \int_{\infty}^{\infty} f(x,y) dxdy + \int_{\infty}^{\infty} f(x,y) dxdy + \int_{\infty}^{\infty} f(x,y) dxdy + \int_{\infty}^{\infty} \int_{\infty}^{\infty} f(x,y) dxdy + \int_{\infty}^{\infty} f(x,y$$

Y, X :

$$E(XY) = E(X) E(Y)$$

:

$$E(X Y) = \iint X Y f(x, y) dx dy$$

$$= \iint xy f(x) f(y) dx dy \dots$$

$$= \iint x f(x) dx \iint y f(y) dy$$

$$= E(X) E(Y)$$

•_____

X

$$f(x) = 2x$$
$$0 \le X \le 1$$

$$E(x+1)^2 \qquad E(x^2) \qquad E(x)$$

:____

$$E(x) = \int_{0}^{1} x f(x) dx$$

$$= \int_{0}^{1} x (2x) dx$$

$$= \int_{0}^{1} 2 x^{2} dx$$

$$= 2 \left| \frac{x^{3}}{3} \right|_{0}^{1}$$

$$= 2 \left| \frac{1}{3} - 0 \right|$$

$$= \frac{2}{3}$$

$$E(x^{2}) = \int_{0}^{1} x^{2} f(x) dx$$

$$= \int_{0}^{1} x^{3} (2x) dx$$

$$= \int_{0}^{1} 2 x^{3} dx$$

$$= 2 \left| \frac{x^{4}}{4} \right|_{0}^{1}$$

$$= \frac{1}{2}$$

$$E(x+1)^{2} = E[x^{2} + 2 \times + 1]$$

$$= E(x^{2}) + 2 E(x) + 1$$

$$= \frac{1}{2} + 2(2/3) + 1$$

$$= \frac{1}{2} + 4/3 + 1$$

$$= \frac{17}{6}$$

Variance & Standard Deviation

(Dispersion)

()

 \mathbf{X} \mathbf{X} \mathbf{X} $\mathbf{E}(\mathbf{x}) =$ $\mathbf{X}_{\mathbf{G}_{\mathbf{x}}}^{2} \quad \mathbf{Var}(\mathbf{x})$ $\mathbf{G}_{\mathbf{x}}^{2} = \mathbf{Var}(\mathbf{x}) = \sum_{\text{all } \mathbf{x}} (\mathbf{x} - \mathbf{\mu})^{2} p(\mathbf{x})$ $= \int_{-\infty}^{\infty} (\mathbf{x} - \mathbf{\mu})^{2} f(\mathbf{x}) d\mathbf{x}$ $= \mathbf{E} [(\mathbf{x} - \mathbf{u})^{2}]$ $= \mathbf{E} [\mathbf{x} - \mathbf{E} (\mathbf{x})]^{2}$

X X X X

X

 \mathbf{X} :

 σ_{x} $\sigma_{x} = \sqrt{\sigma_{x}^{2}} = \sqrt{E(x - \mu)^{2}}$

() X

X

 $.\,\sigma_x$

X = x	f(x) = P(X=x)	Xf(x)	$(\mathbf{x}\text{-}\mathbf{E}(\mathbf{x}))^2$	$\left[\mathbf{x}\text{-}\mathbf{E}\left(\mathbf{x}\right)\right]^{2}\mathbf{f}(\mathbf{x})$
0	1/8	0	$(0-3/2)^2 = 9/4$	9/32
1	3/8	3/8	$(1-3/2)^2 = 1/4$	3/32
2	3/8	6/8	$(2-3/2)^2 = 1/4$	3/32
3	1/8	3/8	$(3-3/2)^2 = 9/4$	9/32
		$\frac{E(x)}{\frac{12}{8}} = \frac{3}{2}$		$\sigma_{x}^{2} = \frac{24}{32} = \frac{3}{4}$

$$\sigma_x^2 = \frac{3}{4}$$

$$\sigma_x = \sqrt{\frac{3}{4}}$$

$$= \frac{\sqrt{3}}{2}$$

$$E(x) = \mu$$

$$Var(x) = \sigma_X^2$$

$$\sigma^2 = E(x^2) - [E(x)]^2$$

$$= E(x^2) - \mu^2$$

$$\sigma^{2} = E[(x - E(x)]^{2}]$$

$$= E[(x^{2} - 2xE(x) + {E(x)}^{2}]]$$

$$= E(x^{2}) - 2{E(x)}^{2} + {E(x)}^{2}$$

$$= E(x^{2}) - [E(x)]^{2}$$

• _____

X

$$[\sigma^2 = E(x^2) - \mu^2]$$

X = x	f(x)	xf(x)	$x^2f(x)$
0	1/8	0	$(0)^2 = (1/8) = 0$
1	3/8	3/8	$(1)^2 (3/8) = 3/8$
2	3/8	6/8	$(2)^2 (3/8) = 12/8$
3	1/8	1/8	$(3)^2 (1/8) = 9/8$
		$E(x) = \frac{3}{2}$	$E(x^2) = \frac{24}{8} = 3$

$$\sigma^2 = E(x2) - [E(x)]^2$$

$$= 3 - (\frac{3}{2})^2$$

$$= \frac{3}{2}$$

=

$$\sigma = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$$

Properties of Variance

X

X a (

 $Var (ax) = a^2 Var (x)$

:

 $Var (ax) = E [ax - E (ax)]^{2}$ $= E [ax - a E (x)]^{2}$ $= a^{2}E [x - E (x)]^{2}$ $= a^{2}var (x)$

•

: . x

2 X (i

 $\frac{X}{2}$ (ii

:

i) Var (2x) = 4 Var (x)= 4 (0.5) = 2

ii)
$$Var(\frac{X}{2}) = \frac{1}{4} Var(x)$$

= $\frac{1}{4} (0.5)$
= 0.125

a

Var
$$(a) = 0$$

:

Var (a) = E
$$[a - E(a)]^2$$

= E $(a - a)^2$
= E (0^2)
= 0

:

$$Var(x \pm a) = Var(x)$$

:

$$Var (x \pm a) = Var (x) \pm Var (a)$$
$$= Var (x) \pm 0$$
$$= Var (x)$$

.

: <u>x</u>

i)
$$x + 3$$

ii)
$$x-6$$

·____

i)
$$Var(x + 3) = Var(x) = 5$$

ii)
$$Var(x-6) = Var(x) = 5$$

: Y X (

$$Var(x+Y) = Var(X) + Var(Y)$$

$$Var(x - y) = Var(x) + Var(y)$$

•

:

$$Var (X \pm Y) = E [(X \pm Y) - E (X \pm Y)]^{2}$$

$$= E [\{X - E(x)\} \pm \{Y - E(y)\}]^{2}$$

$$= E [\{X - E(x)\}^{2} + \{Y - E(y)\}^{2} \pm 2\{X - E(x)\}\{Y - E(y)\}]$$

$$= E \{X - E(x)\}^{2} + E\{Y - E(y)\}^{2} \pm 2E [\{X - E(x)\}\{Y - E(y)\}]$$

$$= Var (x) + Var (Y) \pm 2E [\{X - E(x)\}\{Y - E(Y)\}]$$

= 2 [E
$$\{x - E(x)\}$$
 E $\{Y - E(y)\}$]
= 2 [(0) (0)]
= 0
∴ Var $(X \pm Y) = Var(x) + Var(Y)$

:

$$Var(x_1 \pm x_2 \pm x_3 \pm ... \pm x_n) = Var(x_1) + Var(x_2) + ... + Var(x_n)$$

Covariance

$$f(xy) \qquad Y, X$$

$$: \qquad Y, X$$

$$Cov(X, Y) = \int_{-\infty}^{\infty} \int_{-\infty} [X - E(x)] [Y - E(y)] f(xy) dxdy$$

$$= E[\{X - E(x)\}\{Y - E(y)\}]$$

C) Y, X (Cov :

Cov $(x, Y) = E[(x-\mu_x) (Y-\mu_y)]$

X X, X -

Cov(x, x) = Var(x)

Y X

: b, a -

Cov(ax, by) = ab Cov(x,y)

:

Cov (ax, by) = $E[\{ax - E(ax)\}\{by - E(by)\}]$ = ab $E\{x - E(x)\}\{Y - E(y)\}$ = ab cov (x, y)

a -

Cov(x, a) = 0

:

Cov (x, a) =
$$E[{x - E(x)} {a - E(a)}]$$

= $E[{x - E(x)} {0}]$
= 0

 $Cov(x_1 + x_2, y) = Cov(x_1, y) + Cov(x_2, y)$

:

$$Cov (x_1 + x_2, y) = E [\{(x_1 + x_2) - E (x_1 + x_2)\} \{Y - E (y)\}]$$

$$= E [\{x_1 - E(x_1)\} \{y - E(y)\}] + E [\{x_2 - E(x_2)\} \{y - E(y)\}]$$

$$= Cov (x_1, y) + Cov (x_2, y)$$

 \mathbf{x}_2 , \mathbf{x}_1

$$Var (x_1 + x_2) = Var (x_1) + Var (x_2) + 2Cov (x_1, x_2)$$

$$Var (x_1 - x_2) = Var (x_1) + Var (x_2) - 2Cov (x_1, x_2)$$

:

$$Var (x_1 + x_2) = E [(x_1 + x_2)$$

$$- E (x_1 + x_2)]^2$$

$$= E [\{x_1 - E(x_1)\} + \{x_2 - E(x_2)\}]^2$$

$$= E [x_1 - E(x_1)]^2 + E[x_2 - E(x_2)]^2 +$$

$$2 E [\{x_1 - E(x_1)\} \{x_2 - E(x_2)\}]$$

$$= Var (x_1) + Var (x_2) + 2 Cov (x_1, x_2)$$

$$Var (x_1 - x_2)$$

$$\mathbf{x}_2 , \mathbf{x}_1$$

$$Cov (x_1, x_2) = 0$$

$$\vdots$$

$$(x_1, x_2) = E[\{x_1 - E(x_1)\} \{x_2 - E(x_2)\}]$$

$$Cov (x_1, x_2) = E[\{x_1 - E(x_1)\} \{x_2 - E(x_2)\}]$$

$$= E[x_1 x_2 + E(x_1) E(x_2) - x_1 E(x_2) - x_2 E(x_1)$$

$$= E(x_1) E(x_2) + E(x_1) E(x_2) - E(x_1) E(x_2) - E(x_1) E(x_2)$$

$$= 0$$

$$E(x_1 x_2) = E(x_1) E(x_2)$$

$$\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(x)\operatorname{Var}(y)}} = \rho$$
Y, X

Y , X

$$1 \geq \rho \geq -1$$

$$\rho^2 \leq 1$$

: $E(x) = \mu$ (

i) $E(x-\mu) = 0$

ii) $E(x-c)^2 = E(x - \mu)^2 + (\mu - c)^2$

. C

(

:

a $E(x-a)^2$ (

. E(x)

: Y, X (

 $0 \le X \le 1$ $f(x) = 12 x^{2} (1 - x)$

 $0 \le Y \le 1 \qquad \qquad f(y) = 2 Y$

 $\frac{Y}{x^2} + \frac{x}{Y}$

X (

 $E(x^2 + 3x)$

:

:

. (i

. (ii

-

0.27

: (i (ii (C В A (A C В C , B, A ((i (ii X (f(0) = 0.9f(1) = 0.05f(2) = 0.03f(3) = 0.02

X C (

f(x) = cx

x = 3, 4, 5, 6

:

C (i

X (ii

X (iii

(

 $Cov(x, y) = E(x y) - \mu_x \mu_y$

y,x (

 $0 \le X \le 1 \qquad f(x, y) = x + y$

 $0 \le X \le 1$

Cov(x, y) y, x (i

(x, y) y, x (ii

i)
$$E(x-\mu) = E[(x-E(x))] = E(x) - E(x)$$

= 0

ii)
$$E(x-C)^{2} = E(x^{2}-2cx + C^{2})$$
$$= E(x^{2}) - 2CE(x) + C^{2}$$
$$= E(x^{2}) - 2C\mu + C^{2}$$

$$E (x-\mu)^{2} + (\mu-c)^{2} = E (x^{2} - 2\mu x + \mu^{2}) + \mu^{2} - 2\mu C + C^{2}$$
$$= E (x)^{2} - 2\mu^{2} + \mu^{2} + \mu^{2} - 2\mu C + C^{2}$$
$$= E (x^{2}) - 2\mu c + C^{2}$$

:.

(

(

X = xx f(x)f(x)0.05 0.05 0.43 0.86 0.27 0.81 0.12 0.485 0.09 0.45 0.04 0.25

 $E(X) = \sum_{\text{all } x} XP(x)$

$$E(x-a)^{2} = \underbrace{E(x^{2}) - 2 a E(x) + a^{2}}_{Z}$$

$$) \qquad Z \qquad (a$$

$$\frac{dz}{da} = 0 - 2 E(x) + 2a$$

$$= 0 - 2 a + 2a$$

$$= 0$$

a = E(x)

.

(

$$E\left(\frac{Y}{X^2} + \frac{X}{Y}\right) = E\left(\frac{Y}{X^2}\right) + E\left(\frac{X}{Y}\right)$$
$$= E(Y) E\left(\frac{1}{X^2}\right) + E(X)E\left(\frac{1}{Y}\right)$$

$$E(Y) = \int_{0}^{1} Y f(Y) dy$$

$$= \int_{0}^{1} Y (2Y) dy$$

$$= 2 \int_{0}^{1} Y^{2} dY$$

$$= 2 \left| \frac{Y^{3}}{3} \right|_{0}^{1}$$

$$= \frac{2}{3}$$

$$E\left(\frac{1}{X^{2}}\right) = \int_{0}^{1} \frac{1}{X^{2}} \left\{12 X^{2} (1-X)\right\} dX$$

$$= \int_{0}^{1} \frac{1}{X^{2}} \left\{12 X^{2} - 12 X^{3}\right\} dx$$

$$= 12 \int_{0}^{1} (1-X) dX$$

$$= 12 \left| X - \frac{X^{2}}{2} \right|_{0}^{1}$$

$$= 12 \left(\frac{1}{2}\right)$$

$$= 6$$

$$E(X) = \int_{0}^{1} X \left\{ 12 X^{2} (1-X) \right\} dX$$

$$= 12 \int_{0}^{1} X^{3} - X^{4} dx$$

$$= 12 \left| \frac{X^{4}}{4} - \frac{X^{5}}{5} \right|_{0}^{1}$$

$$= 12 \left(\frac{1}{4} - \frac{1}{5} \right) = \frac{12}{20} = \frac{3}{5}$$

$$E\left(\frac{1}{Y}\right) = \int_{0}^{1} \frac{1}{Y} (2Y) dy$$

$$= \int_{0}^{1} 2 dy$$

$$= 2$$

$$E\left(\frac{Y}{X^{2}} + \frac{X}{Y}\right) = E(Y) E\left(\frac{1}{X^{2}}\right) + E(X) E\left(\frac{1}{Y}\right)$$

$$= \left(\frac{2}{3}\right) (6) + \left(\frac{3}{5}\right) (2)$$

$$= 5.2$$

$$E(X^{2} + 3X) = E(X^{2}) + 3 E(X) \qquad ... \qquad 1$$

$$Var(x) = E(X^{2}) - \{E(X)\}^{2} \qquad ... \qquad 2$$

$$6 = E(X^{2}) - (10)^{2}$$

$$E(X^{2}) = 106 \qquad ... \qquad 3$$

$$E(X^{2} + 3X) = 106 + 3(10)$$

$$= 106 + 30$$

(

X – x	f(x)=P(X=x)	X f(x)	$X^2 f(x)$
0	0.01	0	0
10	0.05	0.50	5
20	0.039	7.80	156
30	0.45	13.50	405
40	0.10	4.00	160

= 136

$$E(x) = \sum_{\text{all } x} Xp(x)$$

$$= \sum_{\text{all } x} Xp(x)$$

$$= 25.8$$

$$= 726$$

$$V(x) = E(x^{2}) - \{E(x)\}^{2}$$
$$= 726 - 665.64$$
$$= 60.36$$

X	P(X)	XP(X)	$X^2 P(x)$
2	0.13	0.26	0.52
4	0.27	1.08	4.32
6	0.32	1.92	11.52
8	0.21	1.68	13.44
10	0.07	0.70	7.00

$$E(x) = \sum XP(x)$$
 $E(x^2) = \sum x^2p(x)$
= 5.64 = 36.80

$$V(x) = E(x^{2}) - \{E(x)\}^{2}$$

$$= 36.80 - 31.8096$$

$$= 4.9904$$

$$\cong 5$$

$$E(x) = \sum_{\text{all } x} X P (X)$$

$$= 4000 (0.005) + 3000 (0.008)$$

$$= 20 + 24$$

$$= 44$$

(

(

$$E(x) = \sum_{\text{all } x} XP(x)$$

$$= 2000 (0.4) + 2500(0.3) + 3000(0.3)$$

$$= 800 + 750 + 900$$

$$= 2450$$

i)
$$E(X_1 + X_2 + X_3) = E(X_1) + E(X_2) + (X_3)$$

= $100000 + 50000 + 25000$
= 175000

ii)
$$V(X_1 + X_2 + X_3) = V(X_1) + V(X_2) + V(X_3)$$

= $10000 + 5000 + 3000$
= 18000

$$= \sum_{\text{allx}} X P (X)$$

$$= \sum_{\text{allx}} X P (X)$$

$$= 0 (0.9) + 1 (0.05) + 2 (0.03) + 3 (0.02)$$

$$= 0 + 0.05 + 0.06 + 0.06$$

$$= 0.17$$

$$=200(0.17)=34$$

i)
$$\sum_{\text{all } x} f(x) = 1$$

$$\therefore \sum_{\text{C} X} CX = 1$$

$$C \sum_{\text{C} X} X = 1$$

$$C (3 + 4 + 5 + 6) = 1$$

$$\therefore C = \frac{1}{18}$$

ii)
$$E(x) = \sum_{\text{all } x} X P(X)$$
$$= \sum_{\text{c} x} X CX$$
$$= C \sum_{\text{c} x} x^{2}$$
$$= \frac{1}{18} (9 + 16 + 25 + 36)$$

$$=\frac{43}{9}$$

iii)
$$V(X) = E(X^{2}) - \{E(x)\}^{2}$$

$$= E(X^{2}) = \sum_{\text{all } x} X^{2} P(X)$$

$$= C \sum_{\text{all } x} X^{3}$$

$$= \frac{1}{18} (27 + 64 + 125 + 216)$$

$$= \frac{216}{9}$$

$$Var(x) = \frac{216}{9} - \left(\frac{43}{9}\right)^{2}$$

$$= \frac{1944 - 1849}{81}$$

$$= \frac{95}{81}$$

Cov
$$(x, Y) = E(XY) - \mu_x \mu_y$$

•

Cov (x, y) = E [(x -
$$\mu_x$$
) (y - μ_y)]
= E (xy - x μ_y - μ_x y + μ_x μ_y)
= E (xy) - μ_x μ_y - μ_x μ_y + μ_x μ_y
= E (XY) - μ_x μ_y

(

Cov (x, y) = E(xy) - E(x) E(y)

$$E(x+y) = \int_{0}^{1} (x+y) f(x,y) dx dy$$

$$= \int_{0}^{1} x f(x,y) dx dy + \int_{0}^{1} x f(xy) dx dy$$

$$= \int_{0}^{1} \left[x \int_{0}^{1} f(xy) dy \right] dx + \int_{0}^{1} y \left[\int_{0}^{1} f(xy) dx \right] dy$$

$$= \int_{0}^{1} \left[x \int_{0}^{1} f(xy) dy \right] dy + \int_{0}^{1} y \left[\int_{0}^{1} (x+y) dx \right] dy$$

$$= \int_{0}^{1} \left[x \int_{0}^{1} (x+y) dy \right] dy + \int_{0}^{1} y \left[\int_{0}^{1} (x+y) dx \right] dy$$

$$= \int_{0}^{1} x \left[x + \frac{y^{2}}{2} \right]_{0}^{1} dy + \int_{0}^{1} y \left[\frac{x^{2}}{2} + yx \right]_{0}^{1} dy$$

$$= \int_{0}^{1} x \left[x^{2} + \frac{x}{2} \right] dx + \int_{0}^{1} \left(y^{2} + \frac{y}{2} \right) dy$$

$$= \left[\frac{x^{3}}{3} + \frac{x^{2}}{4} \right]_{0}^{1} + \left[\frac{y^{3}}{3} + \frac{y^{2}}{4} \right]_{0}^{1}$$

$$= \frac{7}{12} + \frac{7}{12}$$

$$E(x) = \frac{7}{12}$$

$$E(Y) = \frac{7}{12}$$

$$f(x) = x + \frac{1}{2}$$

$$f(y) = y + \frac{1}{2}$$

E(xy)

$$E(xy) = \int_{0}^{1} \int xy f(xy) dxdy$$

$$= \int_{0}^{1} \int xy (x+y) dxdy$$

$$= \int_{0}^{1} \int x^{2}y + xy^{2} dxdy$$

$$= \int_{0}^{1} \int_{0}^{1} x^{2}y dx dy + \int_{0}^{1} \int_{0}^{1} xy^{2} dx dy$$

$$= \int_{0}^{1} \left| \frac{x^{3}y}{3} \right|_{0}^{1} dy + \int_{0}^{1} \left| \frac{xy^{3}}{3} \right|_{0}^{1} dy$$

$$= \int_{0}^{1} \frac{1}{3} y dy + \int_{0}^{1} \frac{1}{3} x dx$$

$$= \int_{0}^{1} \frac{1}{3} y dy + \int_{0}^{1} \frac{1}{3} x dx$$

$$= \frac{1}{3} \int_{0}^{1} y dy + \frac{1}{3} \int_{0}^{1} x dx = \frac{1}{3} \left| \frac{Y^{2}}{2} \right|_{0}^{1} + \frac{1}{3} \left| \frac{X^{2}}{2} \right|_{0}^{1}$$

$$= \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

Cov (x, y) = E(xy) – E(x) E(y)
=
$$\frac{1}{3} + \frac{7}{12} \cdot \frac{7}{12}$$

= $\frac{1}{3} - \frac{49}{144}$
= $\frac{1}{144}$

$$V(y), v(x)$$
 (ii)
$$V(x) = E(x^{2}) - \{E(x)\}^{2}$$

$$E(x^{2}) = \int_{0}^{1} x^{2} f(x) dx$$

$$= \int_{0}^{1} x^{2} (x + \frac{1}{2}) dx$$

$$= \left| \frac{X^{4}}{4} + \frac{X^{3}}{6} \right|_{0}^{1}$$

$$= \frac{5}{12}$$

$$Var(x) = \frac{5}{12} - \left(\frac{7}{12}\right)^{2} = \frac{11}{144}$$

$$V(y) = \frac{11}{144}$$

$$\rho(x,y) = \frac{\text{Cov}(x,y)}{\sqrt{V(x)V(y)}} = \frac{-1/144}{\sqrt{\frac{11}{144} \cdot \frac{11}{144}}} = \frac{-1/144}{11/144} = -\frac{1}{11}$$

THE DISCRETE PROBABILITY DISTRIBUTIONS

The Binomial Distribution

· .

.

.

:_____ n

P q (1-P) ()

: ()

n = :____

S = (

 \mathbf{X}

X P

q = (I-P)

: x

n =

X = x	f(x) = P(X = x)
0	f(0) = P() = q
1	f(1) = P() = P
	q + P = 1

n = :

S = (

qq, qp, pq, pp

X

X

()

n = 2

X = x	f(x) = P(X = x)				
	$f(0) = P() = P() P() = qq = q^2$				
1	f(1) = P() + P() = P() P() + P() P()				
	= Pq + qP = 2qP				
2	$f(2) = P() + P() P() = PP = P^2$				
	$q^2 + 2qP + P^2 = (q+P)^2 = 1$				

n

 $S = \{$

=

qqq, qqP, qPq, qPP, Pqq, PqP, PPq, PPP

X

X

n = 3

X = x	f(x) = P(X = x)
0	$f(0) = P() P() P() P() = q^3$
1	f(1) = P() + P() + P()
	$= q^2 p + q^2 p + q^2 p = 3 q^2 p$
2	f(2) = P() + P() + P()
	$= qp^2 + qp^2 + qp^2 = 3qp^2$
3	$f(3) = P() P() P() P() = p^3$
	$q^3 + 3q^2p + 3qp^2 + P^3 = (q+p)^3 = 1$

:

$$. \qquad n \qquad \qquad 2^n$$

.

 q^{n-x}

 $C_x^n = \binom{n}{x} = \frac{n!}{x!(n-x)!}$

x : $\qquad \qquad : \qquad \qquad n \\ \qquad \qquad \binom{n}{x} p^x \ q^{n-x}$

 $(3^3) p^3$, $(2^3) p^2 q$, $(1^3) pq^2$, $(0^3) q3$ p^3 , $3p^2q$, $3pq^2$, q^3

()

$$\binom{n}{x} p^x \ q^{n-x}$$

$$x = 0, 1, \dots, n$$

$$x$$

$$(q+p)^n$$

$$(q+p)^n = q^n + \binom{n}{1} p q^{n-1} + \binom{n}{2} p^2 q^{n-2} + \dots + \binom{n}{x} p^x q^{n-x} + \dots + \binom{n}{n-1} p^{n-1} q + p^n$$

:

X

n

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} \mathbf{n} \\ \mathbf{x} \end{pmatrix} \mathbf{p}^{\mathbf{x}} \mathbf{q}^{\mathbf{n}-\mathbf{x}}$$

:

$$x=0, 1, ..., n$$
 (i

p (ii

q (iii

$$p + q = (iv$$

(i (ii

(iii

x <u>:</u>

... x

q

∴
$$p = 0.10$$

 $q = 1-P$ = 0.90
 $n = 20$

i)
$$p($$
 $) = f(0)$

$$f(x) = \binom{n}{x} p^{x} q^{n-x}$$

$$f(0) = \binom{20}{0} p^{0} q^{20}$$

$$= (q)^{20} = (0.90)^{20}$$

$$= 0.122$$

ii)
$$P() = f(2)$$

$$f(2) = {20 \choose 2} p^2 q^{18}$$

$$= 190 (0.01)^2 (0.90)^{18}$$

$$= 190 (0.01) (0.9)^{18}$$

$$= 0.285$$

iii) P () = p (x > 2) = 1-p (x

$$\leq 2$$
)
$$= 1 - \{p(x=0) + p(x=1) + p(x=2)\}$$

$$= 1 - \{(0.9)^{20} + 20(0.1)(0.9)^{19} + 0.285\}$$

$$= 1 - \{0.122 + 0.270 + 0.285\}$$

$$= 0.323$$

 $\begin{array}{ccc} n & & & \\ & x & & & n \end{array}$

()

: ()

()

n = 1

X	f(x)	x f (x)
0	q	0
1	р	р
		$\mu = \sum_{0}^{1} x f(x) = p$

X n

)

():

()

$$n = 2$$

X	f(x)	x f (x)
0	q^2	0
1	2pq	$\begin{array}{c} 2qp \\ 2p^2 \end{array}$
2	p ²	$2p^2$
		E(x) = 2p (q+p) $=2p$

n X ()

(

()

n = 3

X	f(x)	X f (x)
0	q^3	0
1	$3p^2q$	$3q^2p$
2	$3p^{2}q$ $3qp^{2}$ P^{3}	$3q^2 p$ $6q p^2$
3	P^3	$3p^3$
		$\mu = E(x) = 3p(q^2 + 2qp + p^2)$
		$=3p (q+p)^2=3p$

()

:

n P

n 2p

n 3p

 $. \hspace{1.5cm} n \hspace{0.5cm} n \hspace{0.5cm} p$

q p

n

$$\mu = E(x) = \sum_{x=0}^{n} x f(x)$$

$$= \sum_{x=0}^{n} x \binom{n}{x} p^{x} q^{n-x}$$

$$= \sum_{x=0}^{n} \frac{x n!}{x!(n-x)!} p^{x} q^{n-x}$$

$$= \sum_{x=1}^{n} \frac{n!}{(x-1)! [(n-1)-(x-1)]!} p^{x} q^{(n-1)-(x-1)}$$

$$= np \sum_{x=1}^{n} \frac{(n-1)! p^{x-1} q^{(n-1)-(x-1)}}{(x-1)! [(n-1)-(x-1)]!}$$

$$= np \sum_{x=1}^{n} \binom{n-1}{x-1} p^{x-1} q^{(n-1)-(x-1)}$$

$$= np (q+p)^{n-1}$$

$$= np$$

:____

x :

X

$$P = \frac{1}{2}$$
$$n = 100$$

$$np =$$
 $\mu = E(x) = np = 100 \left(\frac{1}{2}\right) = 50$

0

n ()
n
$$\sigma_x^2 = \sum (x - \mu)^2 f(x)$$

X ()

p () : () ()

n = 1

X	f(x)	χ - μ	$(\mathbf{x} - \boldsymbol{\mu})^2 \mathbf{f}(\mathbf{x})$
0	q	0-p	$q^2 q$
1	p	1 - p	$(1-p)^2 p$
			$\sigma_{x}^{2} = \mathbf{p}^{2}\mathbf{q} + \mathbf{q}^{2}\mathbf{p}$
			= pq (p+q) = pq

n = 2

X	f(x)	x –	$(x-u)^2 f(x)$
		u	
0	q ²	-2p	$4p^2 q^2$
1	2pq	1-2p	$(1-2p)^2 2pq$
2	p ²	2-2p	$4(1-p)^2 p^2$
			$\sigma_{\rm x}^2 = 4_{\rm p}^2 {}_{\rm q}^2 + (1-2{\rm p})^2 2{\rm pq} + 4(1-{\rm p})^2 {\rm p}^2$
			$= 4_{p}^{2}_{q}^{2} + (1-4p+4p^{2}) 2pq + 4q^{2} p^{2}$
			$= 8_{p}^{2}_{q}^{2} + 2pq - 8p^{2}q + 8p^{2}q$
			$=8p^{2} q (q-1+p) + 2p q$
			$=8p^2 q (0) + 2p q$
			= 2pq

x $\qquad \qquad \qquad n \\ \qquad \qquad (\) \\ \qquad \qquad 3p \qquad (\)$

n 3pq

:

n pqn 2pqn 3Pq

n npq

q p

$$\sigma_{x}^{2} = E(x^{2}) - [E(x)]^{2}$$

$$E(x^{2}) = \sum_{x=0}^{n} x^{2} f(x)$$

$$= \sum_{x=0}^{n} x^{2} {n \choose x} p^{x} q^{n-x}$$

$$= \sum_{x=0}^{n} \frac{x^{2} n! p^{x} q^{n-x}}{x! (n-x)!}$$

$$x(x-1)+x x^{2}$$

$$= \sum_{x=0}^{n} \frac{[x(x-1)+x] n!}{x! (n-x)!} p^{x} q^{n-x}$$

$$= \sum_{x=0}^{n} \frac{x(x-1) n!}{x! (n-x)!} p^{x} q^{n-x} + \sum_{x=0}^{n} \frac{xn!}{x! (n-x)!} p^{x} q^{n-x}$$

$$= \sum_{x=2}^{n} \frac{n(n-1) (n-2)!}{(x-2)! [(n-2)-(x-2)]!} p^{x} q^{(n-2)-(x-2)} + E(x)$$

$$= n (n-1) p^{2} \sum_{x=2}^{n} \frac{(n-2)!}{(x-2)! [(n-2)-(x-2)]!} p^{x-2} q^{(n-2)-(x-2)} + np$$

$$= n (n-1) p^{2} (q+p)^{n-2} + np$$

$$= n^{2} p^{2} - np^{2} + np$$

$$= n^{2} p^{2} - np^{2} + np - n^{2} p^{2}$$

$$= np - np^{2}$$

$$= np (1-p)$$

$$= npq$$

$$\sigma^2 = npq$$

$$\sigma = \sqrt{\sigma^2} = \sqrt{npq}$$

<u>:</u>

X

X

$$P = \frac{1}{2}$$
$$q = \frac{1}{2}$$

$$1 2$$

$$n = 100$$

$$= \sigma_x^2 = npq$$

$$= 100 \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) = 25$$

$$= \sigma = \sqrt{npq} = \sqrt{25} = 5$$

(...)

....

-

-

.

:

•

X

 $. \hspace{1.5cm} \lambda \hspace{1.5cm} x$

:

$$f(x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$$

$$p(x=4) = f(4) = \frac{e^{-3} (3)^{4}}{4!}$$

$$= \frac{0.05 (81)}{24}$$

$$(e^{-3} = ...)$$

 $= \frac{135}{800}$ = 0.16875

_

: × . (i

(;;

. **(ii**

X

$$\lambda = \frac{3 \times 10}{20} = 1.5$$

$$f(x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

i)
$$P(x=0) = f(0) = \frac{e^{-1.5} (1.5)^0}{0!} = e^{-1.5} =$$

0.223

1 - 0.223

$$= 0.777$$

X

$$f(x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

$$x = 0, 1, 2, ...$$

X

λ

$$\mu_{X} = E(x) = \lambda$$

$$\sigma_{X}^{2} = E(x^{2}) - [E(x)]^{2} = \lambda$$

•

$$E(x) = \sum_{x=0}^{\infty} x f(x)$$

$$= \sum_{0}^{\infty} x \frac{e^{-\lambda} \lambda^{x}}{x!}$$

$$= \sum_{1}^{\infty} \frac{e^{-\lambda} \lambda^{x}}{(x-1)!}$$

$$= \lambda e^{-\lambda} \sum_{1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!}$$

$$e^{\lambda} = 1 + \frac{\lambda}{1!} + \frac{\lambda^2}{2!} + \dots = \sum_{x=0}^{1} \frac{\lambda^x}{x!}$$

$$\therefore E(x) = \lambda e^{-\lambda} e^{\lambda} = \lambda$$

$$E(x^2) = \sum_{x=0}^{\infty} x^2 f(x)$$

$$= \sum_{0}^{\infty} \frac{x^2 e^{-\lambda} \lambda^x}{x!}$$

$$X(X-1)+X$$
 X^2

$$= \sum_{0}^{\infty} \frac{\left[x (x-1) + x\right] e^{-\lambda} \lambda^{x}}{x!}$$

$$= \sum_{0}^{\infty} \frac{\left[x (x-1) e^{-\lambda} \lambda^{x} + \sum_{0}^{\infty} \frac{x e^{-\lambda} \lambda^{x}}{x!}\right]}{x!}$$

$$= \sum_{0}^{\infty} \frac{x e^{-\lambda} \lambda^{x}}{(x-2)!} + E(x)$$

$$= \lambda^{2} e^{-\lambda} \sum_{0}^{\infty} \frac{\lambda^{x-2}}{(x-2)!} + \lambda$$

$$= \lambda^{2} e^{-\lambda} e^{\lambda} + \lambda$$

$$= \lambda^{2} + \lambda$$

$$= \lambda^{2} + \lambda$$

$$= (\lambda^{2} + \lambda) - \lambda^{2}$$

$$= \lambda$$

									(
(/)		()					(i
(/)							(ii
:									(
(.)				•				(i
(.)								(ii
(.)									(iii
									(
						:			(i
							(.)	
(.)								(ii

1		k	(
. k			
			(
	:	/	
(/)		(i
			(ii
			(/)
			,
:			(
(/)		(i
(/)		(ii
(/)		(iii
			(
			:
(.)		(i
(.)		(ii

		(iii
		(.)
		(
		(/)
/		(
		(.)
		(
	.(/)	1
()		. (
(.)		
		(
		(.)

```
p , n (
                        (n = p = /) /
p = 0.2
                                               (
                                           n = 35
                 (\mu = 7 \quad \sigma^2 = 5.6)
                                                 (
   e^{-1/2} = )
                                             (i
                                             (0.1839
   (2e^{-1} = 0.7356)
                                             (ii
                                                 (
   (e^{-4} = 0.018)
                                                   (i
 ( . )
                                                   (ii
```

($(e^{-2} = 0.135)$ (i (.) (ii ((.) ($(e^{-4}=0.018)$ (i (ii (0.91) ($(e^{-6}=0.0025)$ (i

(ii

(0.9975)

(0.543)
(i)
(0.457)
(ii)
(22

(.) (i (.)

$$x \qquad x \qquad x$$

$$p = \frac{5}{20} = \frac{1}{4} \qquad p$$

х

$$n = 4$$

$$x = 1$$

$$\frac{1}{4}p =$$

$$q = \frac{3}{4}$$

.

$$P(x=1) = f(1) = {4 \choose 1} \left(\frac{1}{4}\right)^1 \left(\frac{3}{4}\right)^3$$
$$= \frac{4!}{1! \ 3!} \left(\frac{1}{4}\right) \left(\frac{3}{4}\right)^3$$
$$= 4 \left(\frac{1}{4}\right) \left(\frac{27}{64}\right)$$
$$= \frac{27}{64}$$

(ii

P (x \ge 1) = p (x = 1) + p (x = 2) + p (x = 3) + p (x = 4)
= 1 - p (x = 0)
= 1 -
$$\binom{4}{0} \left(\frac{1}{4}\right)^0 \left(\frac{3}{4}\right)^4$$

= 1 - $\left(\frac{3}{4}\right)^4$
= 1 - 81/256 = 175/256

x (

. . .

$$n = 10$$
$$p = 0.2$$
$$q = 0.8$$

i)
$$f(x) = \binom{n}{x} p^{x} q^{n-x}$$

$$p(x = 0) = f(0) = \binom{10}{0} (0.2)^{0} (0.8)^{10}$$

$$= (0.8)^{10}$$

$$= 0.1074$$

ii)
$$p(x \ge 1) = f(1) + f(2) \dots + f(10)$$

= $1 - f(0)$
= $1 - (0.8)^{10}$
= 0.8926

iii)
$$p(x = 3) = f(3) = {\binom{10}{3}} (0.2)^3 (0.8)^7$$
$$= 120 (0.008) (0.8)^7$$
$$= 0.2013$$
$$\approx 0.2$$

x . x (

. . .

$$p = .$$

$$q = .$$

n =

i)
$$p(x = 0) = f(0) = {\binom{15}{0}} (0.15)^0 (0.85)^{15}$$

= $(0.85)^{15}$
= 0.0873

ii)
$$p(x \le 1) = p(x = 0) + p(x = 1)$$

= $f(0) + f(1)$

$$= \binom{15}{0} (0.15)^0 (0.85)^{15} + \binom{15}{1} (0.15)^1 (0.85)^{14}$$
$$= 0.0873 + 15 (0.15) (0.85)^{14}$$
$$= 0.0873 + 0.2312$$
$$= 0.3185$$

: k (

$$n = \frac{1}{6}$$

$$p = \frac{1}{6}$$

$$q = \frac{5}{6}$$

$$p(K = k) = f(k) = {4 \choose k} \left(\frac{1}{6}\right)^k \left(\frac{5}{6}\right)^{4-k}$$

K

K	P_k	P_k
0	(5/6) ⁴	0.4823
1	$4(1/6)(5/6)^3$	0.3858
2	$6(1/6)^2 (5/6)^2$	0.1157
3	$4(1/6)^3 (5/6)$	0.0154
4	$(1/6)^4$	0.0008

x x (

.

$$n = \frac{1}{2}$$

$$q = \frac{1}{2}$$

i)

.

$$P = P(1) + P(2) + P(3) + P(4)$$

$$= \binom{5}{1} \binom{1/2}{2} \binom{1/2}{4} + \binom{5}{2} \binom{1/2}{2}^2 \binom{1/2}{2}^3 + \binom{5}{3} \binom{1/2}{2}^3 \binom{1/2}{2}^2 + \binom{5}{4} \binom{1/2}{2}^4 \binom{1/2}{2}^4$$

$$= \frac{5}{32} + \frac{10}{32} + \frac{10}{32} + \frac{5}{32} = \frac{15}{16}$$

+) - = (

= 1 -
$$[P(5) + P(0)]$$

= 1 - $\left[\frac{1}{32} + \frac{1}{32}\right] = \frac{15}{16}$

ii) +

$$P = P(0) + P(5)$$

= $\frac{1}{32} + \frac{1}{32} = \frac{1}{16}$

x

.... X

p q $p = \frac{1}{3}$ $q = \frac{2}{3}$

i)
$$p(0) = f(0) = {7 \choose 0} \left(\frac{1}{3}\right)^0 \left(\frac{2}{3}\right)^7$$
$$= \left(\frac{2}{3}\right)^7 = \frac{128}{2187} = 0.05853$$

ii)
$$p(1) = f(1) = {7 \choose 1} \left(\frac{1}{3}\right) \left(\frac{2}{3}\right)^6$$

= $7\left(\frac{1}{3}\right) \left(\frac{2}{3}\right)^6 = \frac{448}{2187} = 0.2048$

iii)
$$p(7) = f(7) = {7 \choose 7} \left(\frac{1}{3}\right)^7 \left(\frac{2}{3}\right)^0$$
$$= \left(\frac{1}{3}\right)^7 = \frac{1}{2187} = 0.0005$$

x (

. .

$$n = p = \frac{1}{4}$$

$$q = \frac{3}{4}$$
(i

$$P(x = 0) = f(0) = {9 \choose 0} \left(\frac{1}{4}\right)^0 \left(\frac{3}{4}\right)^9$$
$$= \left(\frac{3}{4}\right)^9$$
$$= 0.075$$

(ii)
$$P(x = 1) = f(1) = {9 \choose 1} \left(\frac{1}{4}\right)^{1} \left(\frac{3}{4}\right)^{8}$$

$$= 0.225$$

(iii

$$P(x \ge 2) = p(x = 2) + p(x = 3) + ... + p(x = 9)$$

$$= 1 - [p(x = 0) + p(x = 1)]$$

$$= 1 - 0.075 - 0.225$$

$$= 0.7$$

х (

.

X

n =

p = q = 1/2

() () () () ()

 $\left[\binom{5}{x} \left(\frac{1}{2} \right)^5 \right]^2$

(0, 0) = P(0) p(0) $= \left[\left\{ \binom{5}{0} \left(\frac{1}{2}\right)^{0} \left(\frac{1}{2}\right)^{5} \right\} \left\{ \binom{5}{0} \left(\frac{1}{2}\right)^{0} \left(\frac{1}{2}\right)^{5} \right\} \right]$ $= \left[\binom{5}{0} \left(\frac{1}{2}\right)^{5} \right]^{2}$

 $P = \left[\left\{ \binom{5}{0} \left(\frac{1}{2} \right)^5 \right\}^2 + \left\{ \binom{5}{1} \left(\frac{1}{2} \right)^5 \right\}^2 + \left\{ \binom{5}{2} \left(\frac{1}{2} \right)^5 \right\}^2 + \left\{ \binom{5}{3} \left(\frac{1}{2} \right)^5 \right\}^2 \right]$

$$+ \left\{ \left(\frac{5}{4}\right) \left(\frac{1}{2}\right)^{5} \right\}^{2} + \left\{ \left(\frac{5}{5}\right) \left(\frac{1}{2}\right)^{5} \right\}^{2} \right]$$

$$= \left(\frac{1}{2^{10}}\right) + 25 \left(\frac{1}{2^{10}}\right) + 100 \left(\frac{1}{2^{10}}\right) + 100 \left(\frac{1}{2^{10}}\right) + 25 \left(\frac{1}{2^{10}}\right) + \left(\frac{1}{2^{10}}\right)$$

$$= \frac{252}{2^{10}} = \frac{252}{1024} = \frac{63}{256}$$

$$x \qquad x \qquad ($$

 $q = \frac{4}{5} \qquad p = \frac{1}{5} \qquad n =$

$$P = (x = 4) + p (x = 5) + ... + p (x = 25)$$

$$= 1 - [p (x = 0) + p (x = 1) + p (x = 2) + p (x = 3)]$$

$$= 1 - \left[\binom{25}{0} \left(\frac{1}{5}\right) \left(\frac{4}{5}\right)^{25} + \binom{25}{1} \left(\frac{1}{5}\right) \left(\frac{4}{5}\right)^{24} + \binom{25}{2} \left(\frac{1}{5}\right)^{2} \left(\frac{4}{5}\right)^{23} \right] + \binom{25}{3} \left(\frac{1}{5}\right)^{3} \left(\frac{4}{5}\right)^{22}$$

$$= 1 - (0.0037777 + 0.0236110 + 0.0708336 + 0.1357644)$$

= 1 - (0.003//// + 0.0236110 + 0.0/08336 + 0.135/644)= 0.766

(

$$p = \left[\binom{4}{0} \left(\frac{1}{3} \right)^0 \left(\frac{2}{3} \right)^4 \right] \left[\binom{1}{1} \left(\frac{1}{3} \right)^1 \left(\frac{2}{3} \right)^0 \right]$$
$$= \left(\frac{2}{3} \right)^4 \frac{1}{3} = \frac{16}{3^5} = \frac{16}{243}$$

$$P = \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{1}{3} = \frac{16}{243}$$

: x (

.

= q =

.

 $P(x \ge 2) = 1 - p(x < 2)$

= n

$$= 1 - [p(x = 0) + p(x = 1)]$$

$$9q = \frac{18}{5}$$

$$q = \frac{18}{45} = \frac{2}{5}$$

$$p = 1 - \frac{2}{5} = \frac{3}{5}$$
() P
$$n = 9 \div \frac{3}{5} = \frac{45}{3} = 15$$

n = p = . q = . np = .

(

$$\mu = np$$

$$\therefore \mu = 35 (0.2) = 7$$

$$\sigma^2 = npq$$

$$\sigma^2 = 7 (0.8) = 5.6$$

x (

$$\lambda = \frac{232}{232} = 1$$

(ii

$$= p(x = 0) + p(x = 1) + p(x = 2) + p(x =$$

$$f(0) = e^{-4} = 0.018$$

$$f(1) = \frac{e^{-4} 4}{1!} = 0.072$$

$$f(2) = \frac{e^{-4} (4)^2}{2!} = 0.144$$

$$f(3) = \frac{e^{-4} (4)^3}{3!} = 0.192$$

$$f(x \le 3) = 0.426$$

x (

$$\lambda = \frac{2}{5} =$$

=

=

$$\lambda = :$$

i)
$$P(x = 0) = f(0) = \frac{e^{-2} 2^0}{0!}$$

= e^{-2}
= 0.135

ii)
$$\lambda = 4$$
 $P(x > 4) = 1-P(x \le 4)$

$$P(x \le 4) = \sum_{x=0}^{4} \frac{e^{-\lambda} \lambda^{x}}{x!}$$

$$= P(x = 0) + P(x = 1) + P(x = 2) + P(x = 3) + P(x = 4)$$

$$f(0) = e^{-4} = 0.018$$

$$f(1) = e^{-4}(4) = 0.072$$

$$f(2) = \frac{e^{-4} (4)^2}{2!} = 8 e^{-4} = 0.144$$

$$f(3) = e^{-4} \left(\frac{64}{6}\right) = 0.192$$

$$f(4) = \frac{e^{-4} (4)^4}{4!} = \frac{64}{6} e^{-4} = 0.192$$

$$0.618$$

$$P(x > 4) = 1 - P(x \le 4)$$

$$= 1 - 0.618$$

$$= 0.382$$

x (

$$\lambda = \frac{\lambda}{4}$$

$$P(x = 4) = f(4) = \frac{e^{-2} 2^{4}}{4}$$

$$= \frac{2}{3} e^{-2}$$

$$= \frac{2(0.135)}{3} = \frac{270}{3}$$

$$= 0.090$$

$$x$$
 ($\lambda = 4$ x

i)
$$P(x=0) = f(0) = \frac{e^{-2} 2^4}{0!}$$

= $e^{-4} = 0.018$

ii)
$$P(x \ge 2) = 1 - P(x < 2)$$

$$= 1 - [P(X = 0) + (P(X = 1))]$$

$$= 1 - (0.018 + 4e^{-4})$$

$$= 1 - (0.018 + 0.072)$$

$$= 0.91$$

$$\begin{array}{c}
\times & x \\
6 = \frac{(6)(10)}{10} = \lambda & x
\end{array}$$

$$\frac{e^{-\lambda} \lambda^{x}}{x!} f(x) =$$

i)
$$P(x = 0) = f(0) = e^{-6} = 0.0025$$

ii)
$$P(x \ge 1) = 1 - P(x < 1)$$

= $1 - P(x = 0)$
= $1 - f(0)$
= $1 - 0.0025 = 0.9975$

$$x \qquad ($$

$$2.5 = \frac{500}{200} = \lambda \quad \therefore$$

$$f(x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$$

i)
$$P(x \le 2) = f(0) + f(1) + f(2)$$

$$f(0) = e^{-2.5}$$

$$f(1) = e^{-2.5}$$

$$f(2) = \frac{e^{-2.5} (2.5)^2}{2} = 3.126 e^{-2.5}$$

$$P(x \le 2) = 6.625 e^{-2.5} = (6.625) (0.082) = 0.543$$

ii)
$$P(x \ge 3) = 1 - P(x < 3)$$
$$= 1 - \{f(0) + f(1) + f(2)\}$$
$$= 1 - 0.543$$
$$= 0.457$$

$$x \qquad x \qquad ($$

$$f(x) = \frac{e^{-\lambda} \lambda^{x}}{x!} \qquad 11.5 = \frac{21}{2} = \lambda$$

i)
$$P(x = 0) = f(0) = e^{-11.5} = 0.00001$$

ii)
$$P(x \le 1) = f(0) + f(1)$$

$$f(1) = e^{-11.5} 11.5$$

$$f(0) + f(1) = 12.5 e^{-11.5} = 0.0001266$$

The Normal Distribution

·

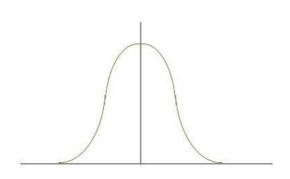
De Moiver

Gauss

Gauss Distribution

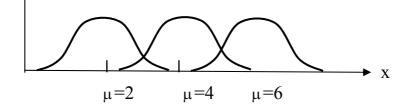
•

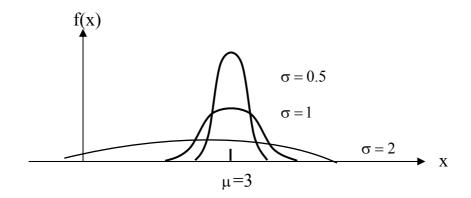
)



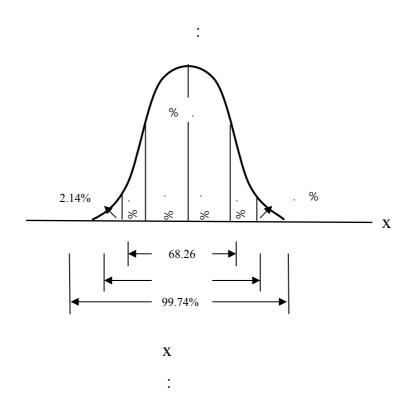
μ () σ

I





μ (... (... (... (... (μ+σ μ-σ % . . -



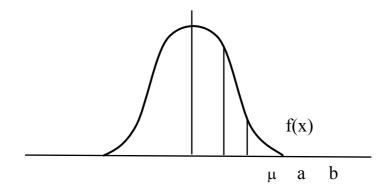
$$f(x) = \frac{1}{\sqrt[q]{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

 $-\infty > X < \infty$

μ . e

. π

(x < b) b, a σ^2 μ $\chi = f(x)$ p (a b, $\chi = a$



The Standard Normal

Distribution

$$f\left(x\right) = \frac{1}{\sqrt{2\pi}} e^{-z^{2}/2}$$

$$-\infty < z < \infty$$

$$f\left(z\right)$$

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz = 1$$

Z Z

$$z = b = a$$

$$z = b = a$$

$$z = b$$

$$P(a < z < b) = \int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

$$()$$

$$f(x)$$
 $f(x)$ X

 σ^2 μ

$$x$$
 , σ^2 , μ
$$N \; (\mu \;\; \sigma^2) \;\; N(0.1) \label{eq:N0.1}$$

.

$$N (\mu \sigma^2)$$

N(0.1)

$$N$$
 (μ σ^2)
$$z = \frac{x - \mu}{\sigma}$$

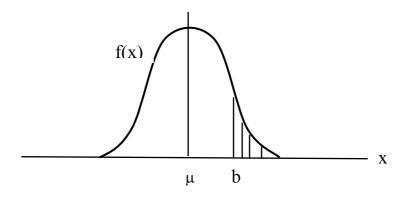
N(0.1)

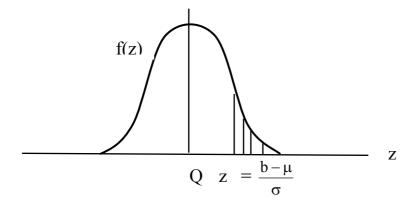
$$\sigma^2$$
 μ $z = \frac{x - \mu}{\sigma}$

.

x b

$$\begin{split} P\left(x \leq b\right) &= P\left(x - \mu \leq b - \mu\right) \\ &= P\left(\frac{x - \mu}{\sigma} \leq \frac{b - \mu}{\sigma}\right) \\ &= P\left(z \leq \frac{b - \mu}{\sigma}\right) \end{split}$$





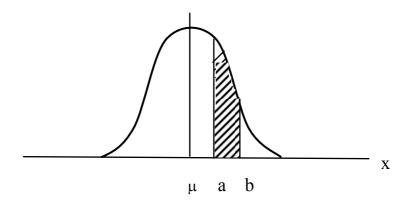
z
$$N(\mu \sigma^2)$$

$$P(X \le b) = P(Z \le \frac{b - \mu}{\sigma})$$

$$\begin{split} P\left(X > b\right) &= 1 - P\left(X \le b\right) \\ &= 1 - P\left(Z \le \frac{b - \mu}{\sigma}\right) \\ &\qquad \qquad \left(\qquad \right) \quad a < b \\ P(a \le X \le b) &= P(Z \le \frac{b - \mu}{\sigma}) - P(Z \le \frac{a - \mu}{\sigma}) \end{split}$$

b

a



i)
$$\int_{-\infty}^{x} f(z)dz = \int_{-\infty}^{0} f(z) dz + \int_{0}^{x} f(z) dz$$
$$= \frac{1}{2} + \int_{0}^{x} f(z) dz$$

ii)
$$\int_{-\infty}^{-x} f(z) dz = \int_{x}^{\infty} f(z) dz$$
$$= \frac{1}{2} - \int_{0}^{x} f(z) dz$$

X

. X

:

·_____

N () X X

:_____

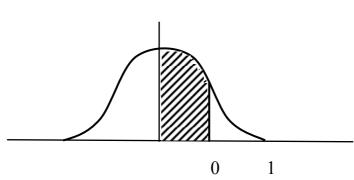
$$z = \frac{x - \mu}{\sigma}$$

$$z_1 = \frac{3 - 3}{2} = 0$$

$$z_2 = \frac{5 - 3}{2} = 1$$

$$p(3 < x < 5) = p(0 < z < 1)$$

$$z = 1 \quad z = 0$$



:_____

$$N (\mu, \sigma^2)$$
 X

:

i)
$$P(\mu - \sigma < x < \mu + \sigma)$$

ii)
$$P(\mu-2\sigma < x < \mu+2\sigma)$$

iii)
$$P(\mu - 3\sigma < x < \mu + 3\sigma)$$

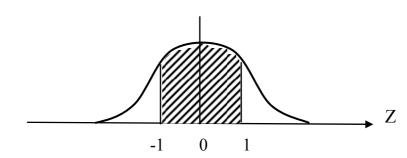
•

i)
$$z_1 = \frac{(\mu - \sigma) - \mu}{\sigma} = -1$$
$$z_2 = \frac{(\mu + \sigma) - \mu}{\sigma} = 1$$

:.
$$P(\mu - \sigma < x < \mu + \sigma) = P(-1 < z < 1)$$

$$z = 1$$
 $z = -1$

$$z = 1$$
 $z = 0$ + $z = 0$ $z = 1$



 $\mu = 0$

$$z = 1$$
 $z = 0$ $z = -1$

∴
$$P(\mu - \sigma < x < \mu + \sigma) = 0.3413 + 0.3413$$

= 0.6826
= 68.26 %

.

ii)
$$P(\mu-2\sigma < x < \mu+2\sigma)$$

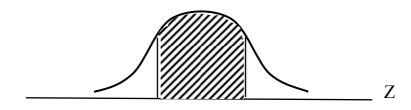
$$z_1 = \frac{(\mu-2\sigma)-\mu}{\sigma} = -2$$

$$z_2 = \frac{(\mu+2\sigma)-\mu}{\sigma} = 2$$

∴
$$P(\mu-2\sigma < x < \mu+2\sigma) = P(-2 < z < 2)$$

+ $z = 0$ $z = -2$
 $z = 2$ $z = 0$
= $0.4773 + 0.4773$
= 0.9546

% .



= 95.46 %

$$z_{1} = \frac{-2}{\sigma} = -3$$

$$z_{1} = \frac{(\mu - 3\sigma) - \mu}{\sigma} = -3$$

$$z_{1} = \frac{(\mu - 3\sigma) - \mu}{\sigma} = 3$$

$$P (\mu - 3\sigma < x < \mu + 3\sigma) = P(-3 < z < 3)$$

$$+ z = 0 \quad z = -3$$

$$\vdots \quad z = 3 \quad z = 0$$

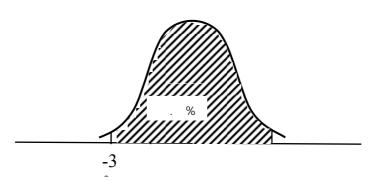
$$= 0.4987 + 0.4987$$

$$= 0.9974$$

% .

.

= 99.74%



: (.) $P \left(\quad < z < \quad . \quad \right) \quad (i$ (.) P (< z < .) (ii P (- < z <) (iii (.) P(-... < z < ...) (iv (.) P(z < ..-) (v(.) (.) P(z > -.) (vi z = - . : N(2, 1)X (.) P(x >) (iP(x < x < 0) (ii)

(.)

•

.

(i

.(.) ()

(ii

.

:

. (i

. (ii

(iii

. X

X .

 $P(X \leq ..)$ (i

 $P(X \le C) = .$ C (ii

1/4

: (i

. (ii . (iii

. (OUNCES)

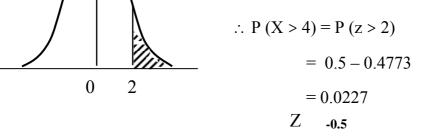
. (i (ii ()

•

- . -∞ .

= .

 $z = \frac{z - \mu}{\sigma} \qquad (i)$ $z = \frac{4 - 2}{1} = 2$



$$Z_1 = \frac{0-2}{1} = -2$$
 (ii

$$Z_2 = \frac{2-2}{1} = 0$$

$$\therefore P(0 < X < 2) = P(z > 2) = P(-2 < z < 0)$$

$$= P(0 < z < 2)$$

= 0.4773

•

.i

$$Z = \frac{x - \mu}{\sigma}$$

$$= \frac{72 - 68.5}{2.3} = \frac{3.5}{2.5}$$

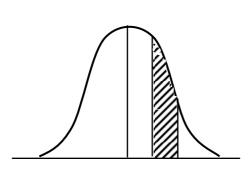
$$= 1.52$$

$$\therefore p(x > 72) = p(z > 1.52)$$

$$= 0.5 - 0.4357$$

$$= 0643$$

. 11



$$z_2 = \frac{72 - 68.5}{2.3} = 1.52$$

 $\therefore P (70 < x < 72) = P (0.65 < z < 1.52)$

 $z_1 = \frac{70 - 68.5}{2.3} = 0.65$

$$= 0.4357 - 0.2422$$
$$= 0.1935$$

.i .

$$z = \frac{185 - 170}{5} = 3$$

$$P(x > 185) = P(z > 3)$$

$$=0.5-0.4987$$

$$= 0.0013$$

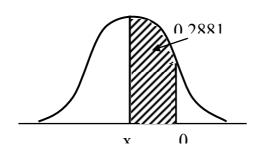
.ii

$$x = \% 0.13$$

$$x = \frac{(0.0013)(3000)}{0.100}$$

$$=3.9 \cong 4$$

.iii



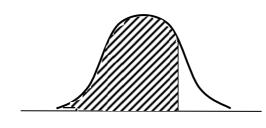
$$z = \frac{x - 170}{5}$$

. .

$$\therefore 0.8 = \frac{\chi - 170}{5}$$

$$x = 174$$

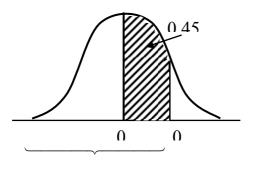
.i .



$$Z = \frac{80 - 36 - 80}{0.3} = 1.2$$

$$p (x \le 80.36) = p(z \le 1.2)$$
$$= 0.5 + 0.3849$$
$$= 0.8849$$

. 11



$$z = \frac{c - 80}{0.3}$$

<u>ک</u> ۱

(

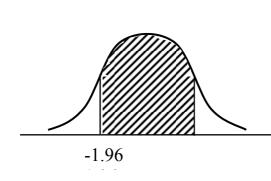
. =

$$\infty$$
 $-\infty$ ∞ \cdots

$$\frac{c - 80}{0.3} = 1.64$$

$$c = 80.492$$

.



$$z_1 = \frac{2.4951 - 2.5}{0.0025} = 1.96$$

$$z_2 = \frac{2.5049 - 2.5}{0.0025} = 1.96$$

$$\therefore P(2.4951 < x < 2.5049) = P$$

$$(-1.96 < z < 1.96)$$

= 2 (0.4750)

$$= 0.95$$

.

$$z_1 = \frac{2.5 - 4}{0.5} = -3$$

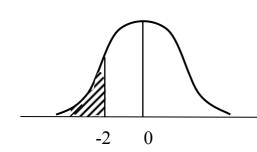
$$z_2 = \frac{3 - 4}{0.5} = -2$$

∴
$$p(2.5 < x < 3) = p (-3 < z < -2)$$

= $p (2 < z < 3)$

$$= 0.4987 - 0.4773$$
$$= 0.0214$$

.i .



$$z = \frac{1400 - 1500}{50} = -2$$

$$p (x < 1400) = p (z < -2)$$

$$= 0.5 - 0.4773$$

$$= 0.0227$$

.ii

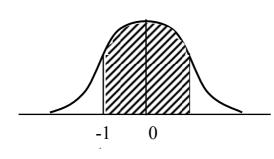
$$z = \frac{1550 - 1500}{50} = 1$$

$$\therefore p(x > 1550) = p(z > 1)$$

$$= 0.5 - 0.3413$$

= 0.1587

.111



$$z_1 = \frac{1450 - 1500}{50} = -1$$

$$z_2 = \frac{1550 - 1500}{50} = 1$$

$$\therefore p (1450 < x < 1550) = p (-1)$$

$$< z <)$$

$$= 2 (0.3413)$$

$$= 0.6826$$

-1.4 0 1.6

$$z_{1} = \frac{7.9 - 10}{1.5} = 1.4$$

$$z_{2} = \frac{12.4 - 10}{1.5} = 1.6$$

$$\therefore p (7.9 < x < 12.4) = p (-1.4)$$

$$< z < 1.6$$

$$= 0.4192 + 0.4452$$

$$= 0.8644$$

.i

$$z = \frac{100 - 100}{5} = 0$$

 $p(x > 100) = p(z > 0) = 0.5$

. ii

$$z = \frac{100 - 100}{5} = 0$$
 $p(x < 100) = p(z > 0) = 0.5$
.iii

$$z_1 = \frac{100 - 100}{5} = 0$$
$$z_2 = \frac{100 - 100}{5} = 2$$

$$\therefore p(100 < x < 110) = p(0 < z <$$

$$= 0.4773$$

-

•

= .
$$S$$
 $A_2 A_1 - P(A_2) = . P(A_1)$

$$P(A_1 A_2) = A_2 A_1$$
 (i

(

(.)
$$P(A_1 A_2)$$
 (ii

(.)
$$P(A_2 - A_1)$$
 (iii

P (
$$A_1 - A_2$$
) (iv

$$P(B) = . P(A)$$

$$P(AB) = .$$

		B A	(ii
		(.)	
(.)		A	(iii
(.)	В	A	(iv
:			_
(/)		A	1 (i
		A	2 (ii
		(/)	
		A	3 (iii
		(/)	
		A	4 (iv
		(/)	
:			_
(/)			(i
			(ii
		((/)
(/)			(iii
(/)			(iv
(/)			(v

 $\frac{1}{3}$ (/) A % % % В

(.)

A (/ = .

=

(i

(ii

(iii

(. (. (.) (iv

(.) · -

.%

. = :

$$(.)^n = 1-(0.7)^n > .$$

$$(0.7)^n > -$$
.

$$(0.7)^n < .$$

$$(0.7)^1 = 0.7$$
, $(0.7)^2 = 0.49$

$$(0.7)^3 = 0.743$$
 , $(0.7)^4 = 0.2401$

$$(0.7)5 = 0.16807$$

e^{-x}

X	e ^{-x}	X	e ^{-x}	X	e ^{-x}	X	e ^{-x}	X	e ^{-x}
٠.٠	1	۲.۰	.150	٤.٠	14	٦.٠	۲٥	۸.٠	•.•••
٠.١	9.0	۲.۱	.177	٤.١	٠.٠١٧	٦.١	•.••٢٢	۸.۱	٠.٠٠٠٣٠
۲.٠	٠.٨١٩	۲.۲	.111	٤.٢	10	۲۲		۲.۸	
۰.۳	٧٤١	۲.۳		٤.٣	٠.٠١٤	٦٠٣	14	٨٠٣	۲٥
٤.٠	٠,٦٧٠	۲.٤	٠.٠٩١	٤.٤	17	٦.٤	17	٨. ٤	۲۳
٠.٥	٠.٦٠٧	۲.٥	٠.٠٨٢	٤.٥	11	٦٥	10	٨٥	
٠.٦	089	۲.۲	٠.٠٧٤	٤٦		٦.٦	٠.٠٠١٤	٨٦	1
٠.٧	• . £97	۲.٧	٠.٠٦٧	٤.٧	•.••٩	٦.٧	17	۸.٧	17
٠.٨	• . £ £ 9	۲.۸	٠.٠٦١	٤.٨	٠.٠٠٨	٦.٨	11	۸.۸	10
۰.٩	٠.٤٠٧	۲.٩	00	٤.٩	•.••٧	٦.٩		٨.٩	٠.٠٠١٤
١.٠	٠٣٦٨	٣.٠		٥.٠		٧.٠	9	۹.۰	17
1.1	•.٣٣٣	٣.١	1.120	0.1	٠.٠٠٦١	٧.١	٠.٠٠٨	۹ _. ١	11
1.7	٠.٣٠١	٣.٢	٠.٠٤١	٥.٢	•.••00	٧.٢	•.•••	٩.٢	
1.7		٣.٣	•.•٣٧	٥.٣		٧.٣	•.•••	٩.٣	9
١.٤	7 £ Y	٣. ٤	٠.٠٣٣	٥.٤		٧.٤	٠.٠٠٦	٩.٤	٠.٠٠٠٨
1.0		٣.٥		٥٥		٧.٥	.,00	9.0	٠٠٠٠٨
١.٦	٠.٢٠٢	٣.٦	•.•٢٧	٥.٦	•.••٣٧	٧.٦		٩.٦	•.•••
١.٧	•.14	٣.٧		٥.٧		٧.٧		۹.٧	٠.٠٠٠٦
١.٨	170	٣.٨	۲۲	٥.٨		٧.٨		۹.۸	٠.٠٠٠٦
1.9	10.	٣.٩		0.9		٧.٩	•.•••	٩.٩	

/ ()
(,
A)
0 z

					U Z		
Z	A	Z	A	Z	A	Z	A
0.00	0.0000	0.47	0.1808	0.94	0.3264	1.41	0.4207
.01	.0040	.48	.1844	.95	.3289	1.42	.4222
.02	.0080	.49	.1879	.96	.3315	1.43	.4236
.03	.0120	.50	.1915	.97	.3340	1.44	.4251
.04	.0160	.51	.1950	.98	.3365	1.45	.4265
.05	.0199	.52	.1985	.99	.3389	1.46	.4279
.06	.0239	.53	.2019	1.00	.3413	1.47	.4292
.07	.0279	.54	.2054	1.01	.3438	1.48	.4306
.08	.0319	.55	.2088	1.02	.3461	1.49	.4319
.09	.0359	.56	.2123	1.03	.3485	1.50	.4332
.10	.0398	.57	.2157	1.04	.3508	1.51	.4345
.11	.0438	.58	.2190	1.05	.3531	1.52	.4357
.12	.0478	.59	.2224	1.06	.3554	1.53	.4370
.13	.0517	.60	.2258	1.07	.3577	1.56	.4382
.14	.0557	.61	.2291	1.08	.3599	1.55	.4394
.15	.0596	.62	.2324	1.09	.3621	1.56	.4406
.16	.0636	.63	.2357	1.10	.3643	1.57	.4418
.17	.0675	.64	.2389	1.11	.3665	1.58	.4430
.18	.0714	.65	.2422	1.12	.3686	1.59	.4441
.19	.0754	.66	.2454	1.13	.3708	1.60	.4452
.20	.0793	.67	.2486	1.14	.3729	1.61	.4463
.21	.0832	.68	.2518	1.15	.3749	1.62	.4474
.22	.0871	.69	.2549	1.16	.3770	1.63	.4485
.23	.0910	.70	.2580	1.17	.3790	1.64	.4495
.24	.0948	.71	.2612	1.18	.3810	1.65	.4505
.25	.0987	.72	.2642	1.19	.3830	1.66	.4515
.26	.1026	.73	.2673	1.20	.3849	1.67	.4525
.27	.1064	.74	.2704	1.21	.3869	1.68	.4535
.28	.1103	.75	.2734	1.22	.3888	1.69	.4545
.29	.1141	.76	.2764	1.23	.3907	1.70	.4554
30	.1179	.77	.2794	1.24	.3925	1.71	.4564
.31	.1217	.78	2823	1.25	.3944	1.72	.4573
.32	.1255	.79	.2852	1.26	.3962	1.73	.482
.33	.1293	.80	.2881	1.27	.3980	1.74	.4591

.34	.1331	.81	.2910	1.28	.3997	1.75	.4599
.35	.1368	.82	.2939	1.29	.4015	1.76	4608
.36	.1406	.83	.2967	1.30	.4032	1.77	.4616
.37	.1443	.84	.2996	1.31	.4049	1.78	.4625
.38	.1480	.85	.3023	1.32	.4066	1.79	.4633
.39	.1517	.86	.3051	1.133	.4082	1.80	.4641
.40	.1554	.87	.3079	1.34	.4099	1.81	.4649
.41	.1591	.88	.3106	1.35	.4115	1.82	.4656
.42	.1628	.89	.3133	1.36	.4131	1.83	.4664
.43	.1664	.90	.3159	1.37	.4147	1.84	.4671
.44	.1700	.91	.3186	1.38	.4162	1.85	.4678
.45	.1736	.92	.3212	1.39	.4177	1.86	.4686
.46	.1772	.93	.3238	1.40	.4192	1.87	.4693

. . .

Z	A	Z	A	Z	A	${f Z}$	A
1.88	0.4700	2.41	0.4920	2.94	0.4984	3.47	0.4997
1.89	.4706	2.42	.4922	2.95	.4984	3.48	.4998
1.90	.4713	2.43	.4925	2.96	.4985	.49	.4998
1.91	.4719	2.44	.4927	2.97	.4985	3.50	.4998
1.92	.4726	2.45	.4929	2.98	.4986	3.51	.4998
1.93	.4732	2.46	.4931	2.99	.4986	3.52	.4998
1.94	.4738	2.47	.4932	3.00	.4987	3.53	.4998
1.95	.4744	2.48	.4934	3.1	.4987	3.54	.4998
1.96	.4750	2.49	.4936	3.2	.4987	3.55	.4998
1.97	.4756	2.50	.4938	3.3	.4988	3.56	.4998
1.98	.4762	2.51	.4940	3.4	.4988	3.57	.4998
1.99	.4767	2.52	.4941	3.5	.4989	3.58	.4998
2.00	.4773	2.53	.4943	3.6	.4989	3.59	.4998
2.01	.4778	2.54	.4945	3.7	.4989	3.60	.4999
2.02	.4783	2.55	.4946	3.8	.4990	3.61	.4999
2.03	.4788	2.56	.4948	3.9	.4990	3.62	.4999
2.04	.4793	2.57	.4949	3.10	.4990	3.63	.4999
2.05	.4798	2.58	.4951	3.11	.4991	3.64	.4999
2.06	.4803	2.59	.4952	3.12	.4991	3.65	.4999
2.07	.4808	2.60	.4953	3.13	.4991	3.66	.4999
2.08	.4812	2.61	.4955	3.14	.4992	3.67	.4999
2.09	.4817	2.62	.4956	3.15	.4992	3.68	.4999
2.10	.4821	2.63	.4957	3.16	.4992	3.69	.4999
2.11	.4826	2.64	.4959	3.17	.4992	3.70	.4999
2.12	.4830	2.65	.4960	3.18	.4993	3.71	.4999
2.13	.4834	2.66	.4961	3.19	.4993	3.72	.4999
2.14	.4838	2.67	.4962	3.20	.4993	3.73	.4999

2.15	.4842	2.68	.4963	3.21	.4993	3.74	.4999
2.1.5	10.16	• 60	1061	2.22	1001	2 = -	4000
2.16	.4846	2.69	.4964	3.22	.4994	3.75	.4999
2.17	.4850	2.70	.4965	3.23	.4994	3.76	.4999
2.18	.4854	2.71	.4966	3.24	.4994	3.77	.4999
2.19	.4857	2.72	.4967	3.25	.4994	3.78	.4999
2.20	.4861	2.73	.4968	3.26	.4994	3.79	.4999
2.21	.4865	2.74	.4969	2.27	.4995	3.80	.4999
2.22	.4868	2.75	4970	3.28	4995	3.81	4999
2.23	.4871	2.76	.4971	3.29	4995	3.82	4999
2.24	.4875	2.77	.4972	3.30	.4995	3.83	.4999
2.25	.4878	2.78	.4973	3.31	.4995	3.84	.4999
2.20	,	2.70	,,,	3.31	,,,	5.0.	,
2.26	.4881	2.79	.4974	3.32	.4996	3.85	.4999
2.27	.4884	2.80	.4974	3.33	.4996	3.86	.4999
2.28	.4887	2.81	.4975	3.34	.4996	3.87	.5000
2.29	.4890	2.82	.4976	3.35	.4996	3.88	.5000
2.30	.4893	2.83	.4977	3.36	.4996	3.89	.5000
2.31	.4896	2.84	.4977	3.37	.4996		
2.32	.4898	2.85	.4978	3.38	.4996		
2.33	.4901	2.86	.4979	3.39	.4997		
2.34	.4904	2.87	.4980	3.40	.4997		
2.35	.4906	2.88	.480	3.41	.4997		
2.33	.4700	2.66	.400	3.41	.4771		
2.36	.4909	2.89	.4981	3.42	.4997		
2.37	.4911	2.90	.4981	3.43	.4997		
2.38	.4913	2.91	.4982	3.44	.4997		
2.39	.4916	2.92	.4983	3.45	.4997		
2.40	.4918	2.93	.4983	3.46	.4997		

-

•

(/)

 $= . S A_2 A_1 -$

 $P(A_2) = .$ $P(A_1)$ $P(A_1) = .$

 $A_2 A_1$ (i

(

(.) $P(A_1 A_2)$ (ii

(.) $P(A_2 - A_1)$ (iii

P ($A_1 - A_2$) (iv

= . S B A -

P(B) = . P(A)

P(AB) = .

(.) B A (i

(.) (.) A (iii (.) B A (iv : (/) A1 (i A2 (ii (/) A3 (iii (/) A4 (iv (/) : (/) ((ii (/) ((ii) (/) (/) (iv) (/) (iv) (/)		B A (ii	
(.) B A (iv : (/) A1 (i		(.)	
: (/)	(.)	A (iii	
(/)	(.)	B A (iv	
A2 (ii	:		_
(/) A3 (iii (/) A4 (iv (/) : (/) (ii (/) (/) (/) (/) (/) (iv)	(/)	A1 (i	
A3 (iii (/)		A2 (ii	
((/)	
A4 (iv (/) : (/) (ii ((/) (iii ((/) (iii (/) (iv		A3 (iii	
(/) : (/) (ii		(/)	
: (/)		A4 (iv	
(/) (i		(/)	
(ii (/) (/) (iii (/)	:		_
(/) (/) (iii (/)	(/)	(i	
(/) (iii (/)		(ii	
(/)		(/)	
(/)	(/)	(iii	
		(iv	
()	(/)	(v	

- \frac{1}{3} \tag{/ /) \tag{/ - }

% B .

(.)

A (/ = .)

. = -

:

(.) (i

(.) (ii

(.) (iii

(.) (iv

-

(.)

· -

.%

. = :

$$(.)^n =$$

$$1 - (0.7)^n > .$$

$$(0.7)^n > -$$
.

$$(0.7)^n < .$$

$$(0.7)^1 = 0.7$$
, $(0.7)^2 = 0.49$

$$(0.7)^3 = 0.743$$
 , $(0.7)^4 = 0.2401$

$$(0.7)5 = 0.16807$$