المحور الثالث: اختبارات الفروق. أولا: الاختبارات البارامترية

المحاضرة التاسعة: الاختبار البارامتري " ${f T}$ " لفحص دلالة الفروق بين المتوسطات: 3

العدد $m_1 \neq m_2$ اختبار T لفحص دلالة الفروق لعينتين مستقلتين وغير متساويتين في العدد T

اختبار ${f T}$ لفحص دلالة الفروق لعينتين مستقلتين وغير متساويتين ومتجانستين:

يستخدم في حالة عدم تساوي عدد أفراد المجموعتين بمعنى $n_1 \neq n_2$ ، وفي هذه الحالة لابد أولا من التأكد من تجانس تباين العينين، أي الكشف عما إذا كانت العينتان تنتميان إلى المجتمع نفسه، وللتأكد من التجانس، نحسب النسبة الفائية (اختبار

$$F = \frac{S_2^2}{S_1^2}$$
 : $f = \frac{S_1^2}{S_2^2}$

الفرض الإحصائي يكون كالتالي:

.(ساجموعتين (تجانس). لا يوجد فرق دال إحصائيا بين تباين المجموعتين $H_0: \sigma_1^2 = \sigma_2^2$

.(عدم تجانس) یوجد فرق دال إحصائیا بین تباین المجموعتین (عدم تجانس). $H_1: \ \sigma_1^2
eq \ \sigma_2^2$

نقوم بعدها بمقارنة F_C مع قيمة F_T باعتماد جدول القيم الحرجة لتوزيع F_C ، تحت درجات الحرية F_C بالنسبة للبسط، و F_C بالنسبة للمقام ، فإذا كانت:

فإننا نقبل الفرض الصفري بمعنى أن الفرق غير دال إحصائيا وبالتالي يوجد تجانس بين العينتين: $F_{C} < F_{T}$

ولحساب قيمة "t"نطبق المعادلة التالية: _

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2(n_1 - 1) + s_2^2(n_2 - 1)}{n_1 + n_2 - 2}(\frac{1}{n_1} + \frac{1}{n_2})}}$$
 (3)

تباين العينة الأولى. $rac{oldsymbol{\zeta}^2}{oldsymbol{\chi}}$: تباين العينة الأولى.

متوسط درجات العينة االثانية. $rac{oldsymbol{\varsigma}^2}{oldsymbol{\chi}}$: تباين العينة الثانية.

. حجم العينة الأولى، n_2 : حجم العينة الثانية.

ملاحظة: درجات الحرية (n_1+n_2-2) .

^{*} هذا في حالة ما إذا كان التباين الأكبر يخص المجموعة الأولى، أما إذا التباين الأكبر يخص المجموعة الثانية ،فإن درجات الحرية تكون n_2-1 بالنسبة للبسط و n_1-1 بالنسبة للمقام.

نتين وغير متجانستين: \mathbf{T} لفحص دلالة الفروق لعينتين مستقلتين وغير متجانستين:

 $(\sigma_1^2 \neq \sigma_2^2)$ فإننا نرفض الفرض الصفري (عدم تحقق الفرض الصفري)، أي أن العينتين غير متجانستين الفرض الصفري إذا كانت: $F_{C>}F_T$: وعدم تجانسهما يدل على عدم تساوي انحرافهما المعياري، وبالتالي للحصول على قيمة t في هذه الحالة وفق القانون التالى: المرغوب فيه يجب أن تحسب قيمة انحرافهما المعياري بصورة مستقلة وتعطى قيمة t في هذه الحالة وفق القانون التالى:

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$
 (4)

تباین العینة $\frac{\mathbf{x}_1}{\mathbf{x}_1}$: متوسط درجات العینة الأولى. $\frac{\mathbf{x}_1}{\mathbf{x}_1}$

تباين العينة $rac{oldsymbol{\chi}_2}{oldsymbol{\chi}_2}$: متوسط درجات العينة الثانية.

تطبيق اختبار \mathbf{T} في حالة عينتين غير متساويتين وغير متجانستين:

- ر4). بالمعادلة رقم t_c عساب قيمة t_c
- 2- نختار مستوى الدلالة المرغوب ، مثلا 0.05.
- n_2 -1 والثانية n_1 -1 عسب درجات الحرية للعينة الأولى n_1
- n_2 -نحسب قيمة t_1 للعينة الأولى المقابلة لدرجة حرية n_1 ثم نحسب قيمة t_2 للعينة الثانية المقابلة لدرجة حرية t_1 .
 - نحسب بعد ذلك t عن طريق t_1 لنحدد مستوى دلالة t وذلك وفق المعادلة التالية: -5

مستوى دلالة t نقارن بين قيمتي t وt المحسوبة بالمعادلة رقم t ، فإذا كانت قيمة t المحسوبة أكبر من قيمة t عند مستوى دلالة t نستنتج أن الفرق بين المتوسطين دال إحصائيا.

وفي مايلي مثالين عن حالة عدم تساوي حجم العينتين في اختبار t:

ومتجانستين:

يفترض باحث في ميدان التربية وجود فروق دالة بين متوسطي درجات الذكور والإناث على مقياس الدافعية للإنجاز، حيث أن حجم العينتين على التوالي هو: $5=n_1$ ، وبعد جمع البيانات من العينتين محل الدراسة وجد أن:

$$\{\bar{x}_1 = 10.96, s_1^2 = 3.23 \}$$

 $\{\bar{x}_2 = 10.76, s_2^2 = 3.07\}$

0.05= α عند مستوى الباحث عند صحة افتراض الباحث عند مستوى الخل: صياغة الفرض الصفري والبديل:

$$\{H_0: \mu_1 = \mu_2 \ H_1: \mu_1 \neq \mu_2 \}$$
 العينتان غير متساويتان $(n_1 \neq n_2)$ نقوم بالخطوات التالية:

1- حساب قيمة التجانس:

$$F=rac{S_1^2}{S_2^2}=rac{3.23}{3.07}=1.05$$
 سياغة الفرض الصفري والبديل الخاص بالتجانس -2 $\{H_0:\,\sigma_1^2=\sigma_2^2\ H_1:\sigma_1^2
eq\sigma_2^2\}$

$$5-1=4$$
: درجة حرية التباين الكبير -3
درجة حرية التباين الصغير: $-3=6$

4- نحسب قيمة F_t المجدولة تحت درجات حرية 4 بالنسبة للبسط و6 بالنسبة للمقام، ومستوى دلالة $\alpha=0.05$ ، نجدها تساوي 4.53.

4.53>1.05 أن غيمة F_c مع قيمة F_c مع قيمة أقل من المجدولة) ، بمعنى قبول الفرض الصفري الذي المحسوبة أقل من المجدولة) ، بمعنى قبول الفرض الصفري الذي يقول بعدم وجود فروق بين تباين المجموعتين، ومن ثمة فالعينتين متجانستين. ولحساب قيمة t نطبق المعادلة رقم (3) كمايلي:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2(n_1 - 1) + s_2^2(n_2 - 1)}{n_1 + n_2 - 2}(\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$= \frac{10.96 - 10.76}{\sqrt{\frac{3.23(5-1) + 3.07(7-1)}{5+7-2}(\frac{1}{5} + \frac{1}{7})}}$$

$$=\frac{0.2}{\sqrt{3.13\times(0.2+0.14)}}=0.19$$

 $0.05=\alpha$ عند مستوى دلالة $0.05=\alpha$ ودرجة حرية $0.05=\alpha$ عند مستوى دلالة $0.05=\alpha$ عند مستوى $0.05=\alpha$ الاختبار الطرفين والتي تساوي $0.05=\alpha$ نلاحظ أن قيمة $0.05=\alpha$ بمعنى قبول الفرض الصفري الذي نلاحظ أن قيمة $0.05=\alpha$ بمعنى قبول الفرض الصفري الذي نلاحظ أن قيمة $0.05=\alpha$ بمعنى قبول الفرض الصفري الذي المنافعية براه قيم المنافعية الم

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{20.6 - 16}{\sqrt{\frac{28.42}{10} + \frac{6.72}{20}}} = 2.58$$

و n₂-1 بالنسبة للعينة الثانية=19

الخطوة الموالية هي حساب قيمة t_1 و t_2) الخطوة الموالية الأولى والثانية) من خلال جدول القيم الحرجة لتوزيع t عند مستوى الدلالة المطلوب ودرجة الحرية المحسوبة نجد:

 $t_{1(0.05\;;\,9)}\text{=}2.26$ $t_{2(0.05;19)}$ =2.09

رغسب قيمة t_1 بدلالة t_1 و t_2 وذلك بتطبيق المعادلة رقم t_1

$$\hat{t} = \frac{t_1 \frac{s_1^2}{n_1} + t_2 \frac{s_2^2}{n_2}}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = \frac{2.26 \frac{(28.42)}{10} + 2.09 \frac{(6.72)}{20}}{\frac{28.42}{10} + \frac{6.72}{20}}$$

$$\dot{t} = \frac{6.42 + 0.71}{2.84 + 0.34} = \frac{7.13}{3.18} = \mathbf{2.24}$$

:نقارن t_c مع t نجد أن

2.24<2.58 مما يجعلنا نرفض الفرض الصفري، وبالتالي نقول بوجود فروق دالة إحصائيا بين نتائج المجموعة التجريبية والضابطة.

المثال الثاني: حالة عينتين مستقلتين غير متساويتين وغير

متجانستين: لدينا البيانات التالية لمجموعتين من الأفراد بعد تعريض n₂ للمعالجة التجريبية:

مفاده أنه لا توجد فروق دالة إحصائيا بين نتائج المجموعة التجريبية والضابطة، أي لا يوجد أثر للمعالجة؟

الحل: أولا علينا صياغة الفرض الصفري والبديل:

 $\begin{cases}
H_0: \ \mu_1 = \mu_2 \\
H_1: \ \mu_1 \neq \mu_2
\end{cases}$

بما أن العينتان مستقلتان وغير متساويتان $(n_1 \neq n_2)$ فإنه-1علينا اختبار تجانسهما عن طريق اختبار F بقسمة التباين الأكبر على التباين الأصغر أي:

$$F = \frac{S_1^2}{S_2^2} = \frac{28.42}{6.72} = 4.23$$

2- صياغة الفرض الصفري والبديل الخاص بالتجانس:

لا يوجد فرق دال إحصائيا بين تباين $H_0:\sigma_1^2=\sigma_2^2$ المجموعتين (تجانس).

يوجد فرق دال إحصائيا بين تباين $H_1: \sigma_1^2
eq \sigma_2^2$ المجموعتين (عدم تجانس).

10-1=9: درجة حرية التباين الكبير 3

20 - 1 = 19 درجة حرية التباين الصغير:

الجدولة تحت درجات حرية 9 بالنسبة F_t بالنسبة للبسط و 19 بالنسبة للمقام، ومستوى دلالة $\alpha=0.05$ نجدها تساوى 2.42.

2.42 < 4.23 مع قيمة F_t مع قيمة F_c مع قيمة -5(المحسوبة أكبر من المجدولة) ، بمعنى رفض الفرض الصفري وبالتالي فالعينتان غير متجانستان، ولتعيين قيمة t نطبق المعادلة رقم (4):

 $^{^*}$ جدول القيم الحرجة لتوزيع $^{\mathrm{t}}$ موجود على مستوى المحاضرة رقم

