

# **Lecture 3**

## **ARTHOLOGY**

### **the Upper Limb**

# Lecture 3: Arthrology of the Upper Limb

## Introduction

Arthrology is the study of joints and their functional relationships. The upper limb exhibits remarkable **mobility**, allowing diverse movements such as reaching, lifting, grasping, and fine manipulation. This flexibility is provided by a series of joints that connect the bones of the shoulder, arm, forearm, and hand in a coordinated kinetic chain.

Most of these joints are **synovial**, meaning they contain a cavity filled with synovial fluid, a capsule, and reinforcing ligaments — features that allow wide motion while maintaining stability.

### 1. General Classification of Upper Limb Joints

| Type of Joint               | Description                                         | Examples in Upper Limb                        |
|-----------------------------|-----------------------------------------------------|-----------------------------------------------|
| <b>Fibrous joints</b>       | Bones joined by fibrous tissue; minimal movement    | Interosseous membrane between radius and ulna |
| <b>Cartilaginous joints</b> | Bones united by cartilage; slight movement          | Sternocostal junctions                        |
| <b>Synovial joints</b>      | Capsule, cavity, and synovial fluid; freely movable | Shoulder, elbow, wrist, etc.                  |

The **upper limb** is dominated by **synovial joints**, ensuring the flexibility necessary for functional activities.

### 2. Joints of the Shoulder Girdle

The shoulder girdle connects the upper limb to the trunk. It includes the **sternoclavicular**, **acromioclavicular**, and **glenohumeral joints**.

Among them, the **glenohumeral joint** is the most important and mobile, so it will be described in detail.

### A. Sternoclavicular Joint (Brief)

- **Type:** Synovial saddle joint (functionally ball-and-socket)
- **Articulating surfaces:** Sternal end of clavicle and manubrium of sternum
- **Function:** Acts as the only true bony link between upper limb and axial skeleton; allows elevation, depression, and rotation of the clavicle.

### B. Acromioclavicular Joint (Brief)

- **Type:** Synovial plane joint
- **Articulating surfaces:** Lateral end of clavicle and acromion of scapula
- **Function:** Permits small gliding motions that accompany scapular movements.

## 3. Glenohumeral Joint (Shoulder Joint)

The **glenohumeral joint** is the most mobile joint in the human body. It connects the upper limb to the scapula and allows a wide range of complex movements. However, this high mobility comes at the expense of stability.

### A. Type

- Synovial **ball-and-socket** joint.

### B. Articulating Surfaces

- **Head of the humerus:** Large, hemispherical, covered with hyaline cartilage.
- **Glenoid cavity of the scapula:** Shallow concavity, deepened by a fibrocartilaginous rim called the **glenoid labrum**.

### C. Joint Capsule

- Thin, loose, and attaches around the anatomical neck of the humerus and the margins of the glenoid cavity.
- The capsule is weakest inferiorly, explaining the frequency of **inferior dislocations**.

## D. Ligaments

### 1. Capsular ligaments:

- **Glenohumeral ligaments** (superior, middle, inferior): reinforce the anterior aspect.
- **Coracohumeral ligament:** strengthens the superior part of the capsule.

### 2. Accessory ligaments:

- **Transverse humeral ligament:** bridges the intertubercular groove, keeping the tendon of the biceps brachii in place.
- **Coracoacromial ligament:** forms the coracoacromial arch — a strong protective roof preventing upward displacement of the humeral head.

## E. Synovial Membrane

- Lines the inner surface of the capsule and forms bursae (e.g., subscapular bursa, subacromial bursa) to reduce friction during movement.

## F. Muscular Reinforcement

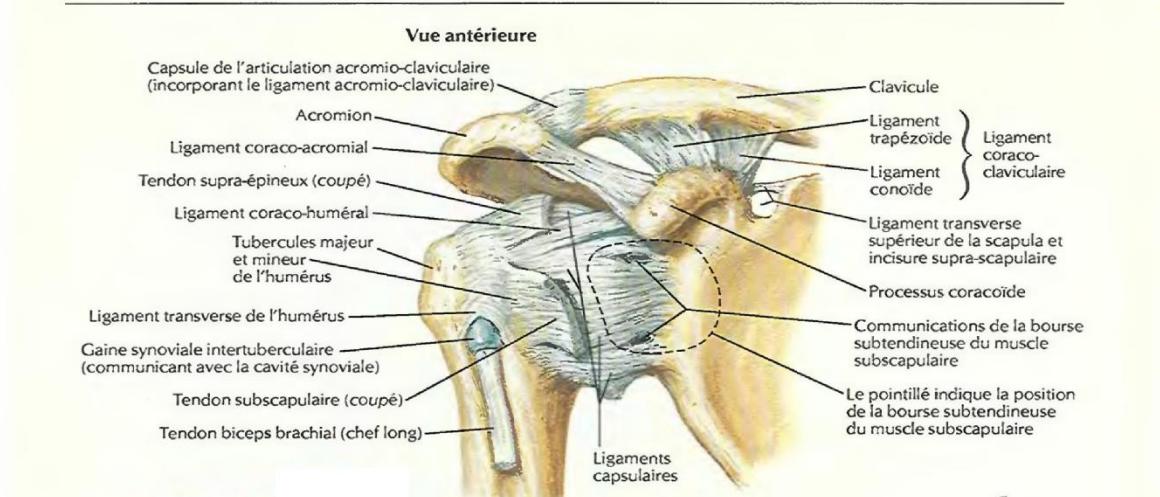
The glenohumeral joint is stabilized dynamically by the **rotator cuff muscles**, whose tendons fuse with the capsule:

- **Supraspinatus** (superior)
- **Infraspinatus and Teres minor** (posterior)
- **Subscapularis** (anterior)

## G. Movements

The shoulder joint allows movements in **three axes and six directions**:

| Movement                | Main Muscles Involved                                                |
|-------------------------|----------------------------------------------------------------------|
| <b>Flexion</b>          | Pectoralis major, Anterior deltoid, Coracobrachialis, Biceps brachii |
| <b>Extension</b>        | Latissimus dorsi, Posterior deltoid, Teres major                     |
| <b>Abduction</b>        | Supraspinatus (initiates), Deltoid (continues)                       |
| <b>Adduction</b>        | Pectoralis major, Latissimus dorsi, Teres major                      |
| <b>Medial rotation</b>  | Subscapularis, Pectoralis major                                      |
| <b>Lateral rotation</b> | Infraspinatus, Teres minor                                           |


**Circumduction** is a combination of all the above movements.

## I. Clinical Note

- The glenohumeral joint is **prone to dislocation**, most often **anteriorly**, due to the shallow glenoid cavity and weak inferior capsule.
- Rotator cuff injuries** are common, especially supraspinatus tendon tears.
- Bursitis** (inflammation of subacromial bursa) may cause shoulder pain and restricted movement.

| Feature                      | Description                                                       |
|------------------------------|-------------------------------------------------------------------|
| <b>Joint type</b>            | Synovial ball-and-socket                                          |
| <b>Articulating surfaces</b> | Humeral head and glenoid cavity                                   |
| <b>Main ligaments</b>        | Glenohumeral, coracohumeral, coracoacromial                       |
| <b>Dynamic stabilizers</b>   | Rotator cuff muscles                                              |
| <b>Movements</b>             | Flexion, Extension, Abduction, Adduction, Rotation, Circumduction |
| <b>Common injuries</b>       | Anterior dislocation, rotator cuff tear, bursitis                 |

### Articulation de l'épaule (gléno-humérale)



## 4. Elbow Joint

The elbow joint acts as a hinge between the arm and forearm, providing controlled flexion and extension.

**A. Type :** Synovial hinge joint.

**B. Articulations**

- Between **trochlea of humerus** and **trochlear notch of ulna**, and between **capitulum of humerus** and **head of radius** (both enclosed in one capsule).

**C. Ligaments**

- **Ulnar collateral ligament** (medial)
- **Radial collateral ligament** (lateral)
- **Annular ligament**: encircles the head of the radius

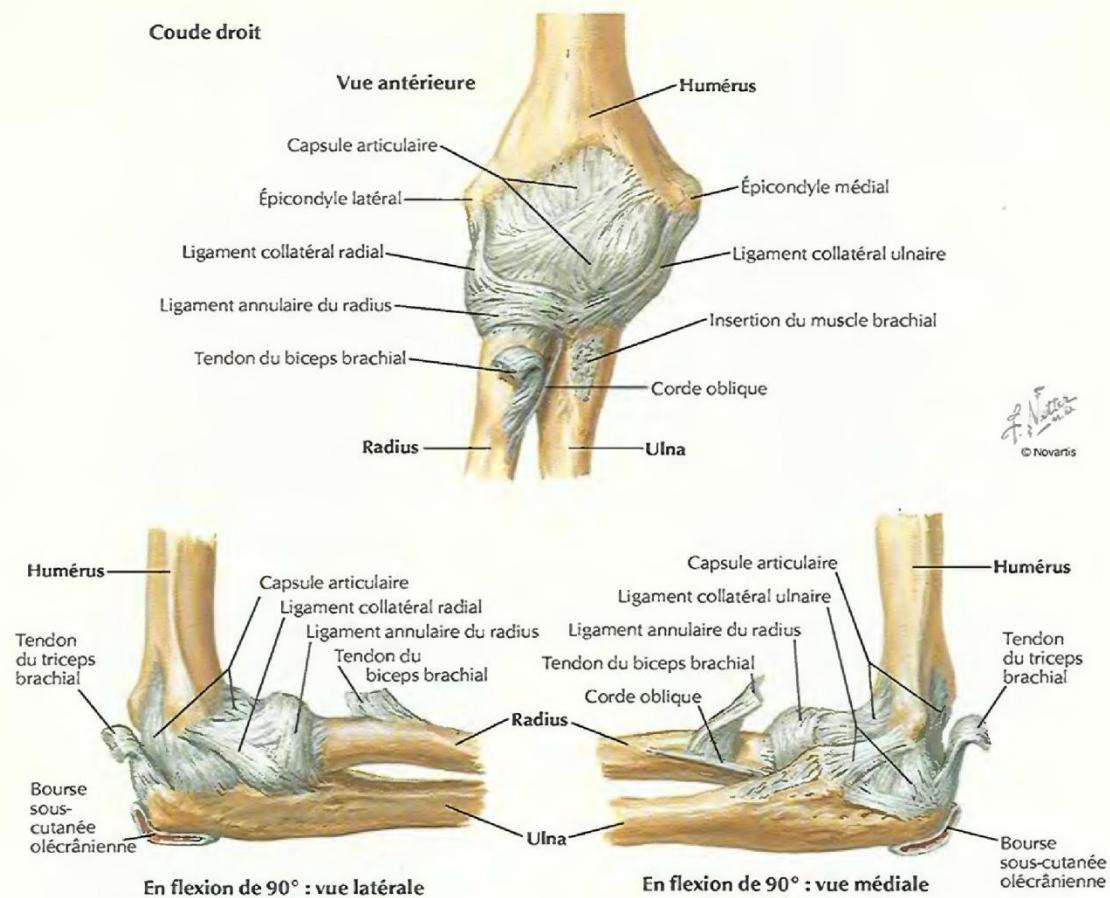
**D. Movements**

- **Flexion and extension** only.
  - *Flexors*: Brachialis, Biceps brachii, Brachioradialis
  - *Extensors*: Triceps brachii, Anconeus

**E. Clinical Note**

- “**Nursemaid’s elbow**” (radial head subluxation) occurs when the annular ligament slips over the head of the radius — common in children.

| Feature                | Description                                     |
|------------------------|-------------------------------------------------|
| <b>Joint type</b>      | Synovial hinge                                  |
| <b>Movements</b>       | Flexion, Extension                              |
| <b>Ligaments</b>       | Ulnar and radial collaterals, annular ligament  |
| <b>Common injuries</b> | Dislocation, ligament sprain, nursemaid’s elbow |


## 5. Radioulnar Joints

The **proximal** and **distal radioulnar joints** permit **pronation** and **supination** of the forearm.

| Joint                      | Type  | Main Ligament                    | Movement                       |
|----------------------------|-------|----------------------------------|--------------------------------|
| <b>Proximal radioulnar</b> | Pivot | Annular ligament                 | Rotation of radius around ulna |
| <b>Distal radioulnar</b>   | Pivot | Triangular fibrocartilage (TFCC) | Rotation of distal radius      |

- **Interosseous membrane:** binds both bones and transmits forces during hand actions.
- **Muscles for pronation:** Pronator teres, Pronator quadratus
- **Muscles for supination:** Supinator, Biceps brachii

### Ligaments du coude



## 6. Wrist (Radiocarpal) Joint

- **Type:** Synovial ellipsoid (condyloid) joint
- **Articulations:** Distal radius and articular disc with proximal carpal bones (scaphoid, lunate, triquetrum)
- **Movements:** Flexion, extension, abduction (radial deviation), adduction (ulnar deviation), and circumduction
- **Ligaments:** Palmar, dorsal, ulnar, and radial collateral ligaments

The wrist joint provides stability and smooth transition of movements from forearm to hand.

## 7. Joints of the Hand (Brief Overview)

The hand contains numerous joints that collectively allow precise movements and dexterity.

| Region                           | Joints Included                            |
|----------------------------------|--------------------------------------------|
| Intercarpal joints               | Between carpal bones (gliding)             |
| Carpometacarpal (CMC) joints     | Between carpal and metacarpal bones        |
| Metacarpophalangeal (MCP) joints | Between metacarpals and proximal phalanges |
| Interphalangeal (IP) joints      | Between phalanges (proximal and distal)    |

**Note:** The **CMC joint of the thumb** is a **saddle joint**, enabling opposition — a unique and essential movement for grasping.

## Summary Table: Principal Joints of the Upper Limb

| Region          | Joint                         | Type            | Main Movements                          |
|-----------------|-------------------------------|-----------------|-----------------------------------------|
| Shoulder girdle | Sternoclavicular              | Saddle          | Elevation, rotation                     |
| Shoulder girdle | Acromioclavicular             | Plane           | Gliding                                 |
| Shoulder        | Glenohumeral                  | Ball-and-socket | Flexion, extension, abduction, rotation |
| Arm             | Elbow                         | Hinge           | Flexion, extension                      |
| Forearm         | Radius-Ulna (proximal/distal) | Pivot           | Pronation, supination                   |
| Wrist           | Radius-Carpal                 | Ellipsoid       | Flexion, extension, deviation           |
| Hand            | CMC, MCP, IP                  | Various         | Fine movements, grip                    |

## Conclusion

The arthrology of the upper limb reveals a perfect balance between **mobility** and **stability**. The **glenohumeral joint** ensures maximum range of motion, while the **elbow** and **radioulnar joints** refine forearm actions. The **wrist and hand joints**, though smaller, offer exceptional dexterity and precision — essential for all manual activities. Understanding the structural and functional aspects of these joints is crucial for anatomy, biomechanics, and clinical applications in sports and rehabilitation.